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Foreword
The story behind this work begins with the lectures on Physics of Financial Mar-
kets at École Polytechnique, a rather intriguing course, offered jointly to economics
and physics majors, and held at the unfortunate hour of 8 a.m. on Fridays. De-
spite the timing, the course was a revelation for me. It showed how the elegance
of theoretical results could be grounded in physical intuition and observation, and
ultimately applied to a field as fascinating—and as central to our everyday lives
—as economics.

To bridge the gap between engineering and economics, I decided to pursue an ad-
ditional year focused on finance, as I was convinced that a PhD in Econophysics
was one of the most exciting paths I could take. Therefore, I’m deeply grateful to
Jean-Philippe Bouchaud and Michael Benzaquen for giving me the opportunity
to join their lab, and to Grégoire Loeper for welcoming me at BNP Paribas CIB.
Being part of these two teams—with their very different perspectives on markets,
one rooted in physics and the other in a more mathematical and institutional ap-
proach—has been an incredibly enriching experience. These two experiences were
further complemented by several exciting teaching roles as an Assistant Professor
at ENSAE and Sorbonne University.

The initial research idea for this PhD was to study jumps and liquidity crises
in the order book. And just like financial markets, life brings its own share of
uncertainty: this first project, which I began in September 2022, ended up being
the last one I completed in three years later... Perhaps a good illustration of what
researchers often call“the long horizon of research”. Indeed, it was interrupted by
an amazing and unexpected opportunity to spend five months in Japan, starting
in February 2024. I had the chance to join the Kanazawa lab—I am also deeply
grateful to him—and work on a unique dataset containing trader identifiers. This
experience opened the door to the study of price impact, which eventually became
the main focus of my thesis and a subject I find truly fascinating.

Luckily, one of our projects, the VAR model, turned out to provide a natural
transition from price impact to liquidity crisis. As a result, the structure of this
thesis is as follows: it begins with a general introduction, which can be skipped
by readers already familiar with financial markets. This is followed by two more
technical introductions, one on price impact models and the other on market
stability. Part II (Price Impact) and Part III (Market Stability) each present the
technical studies we conducted. Finally, Part IV concludes the thesis and outlines
several directions for future research.
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Chapter 1

General Introduction

An efficient market is one in which price is within a factor 2 of value, ie,
the price is more than half of value and less than twice value.

Fisher Black
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Chapter 1.

October 14th, 2013 —the Nobel Prize in Economic Sciences is awarded to three
titans of financial thought: Eugène Fama, Lars Peter Hansen, and Robert Shiller,
each honored for their pioneering contributions to our understanding of asset
prices. And yet, beneath the surface of this shared recognition lies a striking
paradox: their conclusions, though equally celebrated, stand in stark opposition.

Eugène Fama, following in the intellectual lineage of Louis Bachelier, is best known
for formalizing the Efficient Market Hypothesis (EMH), according to which finan-
cial markets fully and instantaneously reflect all available information. In con-
trast, Robert Shiller, a leading figure in behavioral finance, argues that prices are
often driven by irrational behavior, speculative bubbles, and psychological biases
—forces that challenge the notion of market efficiency.

This enduring tension lies at the heart of modern financial economics and moti-
vates the central question of this thesis: Why do prices move? To approach this
question, we adopt a physicist-inspired methodology, in the spirit of Econophysics,
seeking to infer macroscopic phenomena from underlying microscopic dynamics.
In physics, this typically means studying the behavior of particles or spins to
understand processes such as gas dynamics or magnetism. In finance, the com-
parable microscopic framework is market microstructure—the field that examines
the mechanisms and frictions through which trading occurs and prices are formed.

When reviewing the literature and providing the state-of-the-art models in this
area, it is difficult to surpass the seminal book Trades, Quotes and Prices : Fi-
nancial Markets under the microscope [7]. It has served not only as a foundational
reference for this thesis, but also as a true bedside book over these three years.
Thus, I will aim to provide a concise introduction aligned with the work con-
ducted over these three years, while interested readers are encouraged to consult
this reference for more detailed content.

1.1 Overview of Modern Financial Markets

1.1.1 Their fundamental role

Financial markets play a central role in modern economies, even though their un-
derlying principles date back centuries. Broadly speaking, their purpose can be
summarized in three functions: facilitating the exchange of asset ownership be-
tween economic agents, determining asset values through transaction prices, and
enabling companies to raise capital on a global scale. I will briefly mention the
earliest form of trade —barter —which appears to be present even in the earliest
human societies. The main drawback of barter is its extreme illiquidity: if one
party isn’t interested in what the other is offering, the transaction does not take

4



Chapter 1.

place —no matter how many goats you’re willing to trade for a sack of grain. No
mutual interest, no deal. That’s why the use of an intermediary—such as gold or
money —quickly established itself as the easiest way to trade. Indeed, it is much
easier to agree on the value of a coin than to find someone who simultaneously
wants your goat and happens to own a sack of grain. Let then to the earliest
documented financial markets, which likely emerged in the early 17th century
with the Initial Public Offering (IPO) of the Dutch East India Company on the
Amsterdam Stock Exchange. This event marks the beginning of financial markets
resembling those we know today, where agents can not only exchange goods but
also invest in publicly traded companies. Again, one of the main challenges was
finding liquidity—that is, a buyer willing to pay for the shares you wanted to sell.
At the time, when stock ownership was mostly limited to the nobility, the usual
method involved sending a valet to roam the city’s pubs, loudly calling out in
search of a willing counterpart.
Even if this form of market may seem far removed from the low-latency envi-
ronments we are used to today (where transactions are typically effected at the
microsecond level), it is still interesting to see that they weren’t so different from
modern markets, especially when it comes to bubble or crashes. For example, con-
sider well-known events such as the Tulip Mania or the South Sea Bubble, during
which even Isaac Newton famously suffered significant financial losses [8]. That
been said, a quick look at the backgrounds of employees in today’s major financial
institutions suggests that physicists may have taken their revenge...

In this thesis, we will focus in particular on the second fundamental role of financial
markets: assigning value to things through the disclosure of prices. To that end, let
us first describe the well-known Efficient Market Hypothesis (EMH). The central
question underlying the theory is: what is the best way to agree on the value of
a given asset without relying on any central authority (such as legal or political
power) to impose it? The answer is the following: bring everyone to the table
and ask each participant to propose a price. Suppose that agents are independent,
identically distributed (we will revisit this assumption in more technical terms
in Section 1.3), rational and reasonably well-informed. Then, if we denote the
fundamental value of the asset by p0, each agent submits a price pi = p0 + ηi,
where ηi is white noise—that is, a random individual bias. By averaging, it indeed
may allow on to estimate the fundamental value p0.

Building on this mechanism, and under the three standard assumptions of eco-
nomic theory—agent rationality, perfect information, and utility maximization—
the Efficient Market Hypothesis asserts that market prices are a reliable proxy
for "fundamental value" of the underlying asset. Prices are assumed to instanta-
neously incorporate all available information at any given time. One consequence
of this belief is the idea that markets should be in equilibrium: large price devi-

5



Chapter 1.

ations are mainly caused by exogenous events (i.e., external to the market), and
markets should subsequently return to equilibrium. Another consequence—which
may be questioned at first glance by observing the repartition of economic activity
today—is that it should be impossible to systematically extract profits from the
market.

Before going more deeply into these theories—which we will analyze quantitatively
later—let us first outline the structures and principles governing the microscopic
world of modern electronic financial markets.

1.1.2 The limit order book

Although many forms of asset exchange have emerged—especially over the past
decade with the rise of blockchain and crypto-assets, which are typically traded
in dark pools—two main conventional mechanisms still dominate today’s markets.
The first is Over-the-Counter (OTC) trading, typically used for specific asset
classes such as large bond issues, complex derivative products, real estate etc. In
this setting, transactions take place directly between buyer and seller, outside of a
centralized exchange, and are often negotiated bilaterally. Information related to
the transaction is usually not publicly disclosed, and liquidity in these markets is
often provided by specialized institutions, commonly referred to as dealers. In this
thesis, we focus exclusively on the second mechanism: assets traded on centralized
exchanges via the limit order book. Those centralized orderbooks are usually used
for liquid assets, such as stocks or futures. As we will study limit order books in
detail later, let us begin by providing a thorough introduction.

Market venues: A given asset is usually traded on different stocks exchanges,
and within a exchange it can also be traded on different limit orders books. All
these possibilities are referred to as market venues, where liquidity is distributed.
For instance, if a fund seeks to acquire a large quantity of a given stock, it is
likely to execute portions of the order across multiple venues—buying part of it
on the London Stock Exchange, another part on NASDAQ, and so on. Thanks
to the digitization of financial markets, it has become increasingly easy to trade
directly across multiple stock exchanges. Ensuring that prices remain consistent
across these venues is typically the role of arbitrageurs (for example low latency
market makers), as we will discuss later. Since arbitrageurs tend to operate with
high efficiency, it is also a common practice to consider the aggregated limit order
book—that is, the consolidation of all limit order books for a given asset across
different venues. However, when relevant, we will also specify cases where data
from a particular market venue has been used.
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Types of orders: Even though some specific orders types could exist depending
on the market venues (iceberg, block trades etc), one can list three basic universal
kinds of order :

• Limit orders: These represent an intention to trade a specific quantity at a
specified price. Once submitted to the exchange, a limit order is stored in
the order book and made visible to all market participants. It constitutes
the revealed liquidity of the book. If the trader wants to buy (resp. sell) the
asset, the order is placed on the bid (resp. ask) side.

• Cancellation orders: These enable a trader to cancel an existing limit order
in the order book. Naturally, a cancellation can only remove a limit order
placed by the same trader.

• Execution (market) orders: These are used by a trader to actually exchange
the asset by matching with revealed limit orders. Typically, the trader speci-
fies a trade quantity, which is executed starting from the best available offers
and continuing through less favorable ones if needed.

Type of auction: Different types of auction mechanisms are used across mar-
kets, depending on the exchange and the nature of the traded asset. We briefly
describe the two most common formats: the single auction and the continuous
double auction.

In a single auction, the limit order book evolves throughout the day—traders can
post and cancel limit orders—but actual trades occur only at a predetermined
time. For example, a trader may submit a market order (at 10 a.m. for example),
yet retain the ability to cancel it before the auction is executed (at 12 p.m.). This
type of mechanism, while rich in stylized facts, see [9] for reference, is not the
focus of our study.

Instead, we concentrate on the continuous double auction, which is the standard
mechanism in most modern stock exchanges. In this setting, both limit and market
orders can be submitted at any time during trading hours. Transactions occur
in continuous time: whenever a market order matches a limit order, the trade
is executed immediately. As such, market orders are definitive—once submitted,
they cannot be canceled. This continuous interaction between supply and demand
shapes the dynamics of the limit order book in real time, and also define a real
transaction price.

Finally, it is worth noting that some exchanges commonly combine both types
of auction mechanisms. For example, the Tokyo Stock Exchange (which we will
discuss in more detail in Section 4) operates with an opening and closing auction
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at the start and end of the trading day, respectively, while the continuous double
auction mechanism governs trading during the rest of the session.

Available information: Most of financial institutions working in the High Fre-
quency field not only look at past transaction prices (it is called L2 data), but
directly at the live limit order book (L3 data), which provide much more informa-
tion than prices only, as it give one a hint of the live level of supply and demand.
Indeed, it is well known for example that volume imbalance Qbid−Qask

Qbid+Qask is a good
predictor of the sign of the next price change, see [10]. While it is generally pos-
sible to record the price, quantity, and timestamp of each order in the order flow,
the identity of the order’s initiator remains unknown—except in a few highly spe-
cific market settings. Anonymity is deliberately maintained by the stock exchange
as a core feature of the trading infrastructure. That being said, the availability of
additional information can also open the door to new forms of market manipula-
tion. One of the most well-known manipulative techniques is spoofing, extensively
studied in [11]. The strategy works as follows: suppose you wish to sell at a fa-
vorable price. You place a genuine limit order on the ask side. To increase the
chances of execution at that price, you simultaneously submit a very large buy
limit order on the bid side, creating the illusion of strong buying interest. This
artificial demand can move the market toward the ask, allowing your sell order to
be executed. The bid-side order is then canceled before it can be matched. This
tactic is, of course, illegal, as it misleads other market participants by generating
false signals of demand or supply. Yet it turns out to be highly effective, as many
traders heavily rely on the information visible in the limit order book.
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Figure 1.1: Snapshot of the order book for the U.S. stock AHAA-UQ, traded on the
NYSE on 2022-11-02. Red indicates the volume available on the ask side, while blue

shows the volume on the bid side. Prices are expressed in U.S. dollars.

Variables of Interest in the Limit Order Book The first key variable is the
mid price, defined as the average of the best ask price pa and the best bid price pb.
Closely related is the spread, which measures the difference of price between these
best quotes. Introducing the tick size ψ, the smallest possible price increment in
the limit order book (LOB), allows one to classify stocks as either large tick or
small tick.

Although somewhat simplified, this classification is based on the number of ticks
—that is, discrete price levels—contained within the spread. For large tick stocks,
this number is typically close to one, meaning the spread equals one tick: pa =
pb + ψ. Conversely, for small tick stocks, the spread covers multiple ticks, usually
two or three: pa = pb + kψ with k ≈ 2–3. Choosing an appropriate tick size is a
subtle and important regulatory decision, see [12].

1.1.3 Market ecology
Now that we have a reasonable understanding of how the microstructure of finan-
cial markets works, let us introduce the key players—that is, the main institutions
operating in these markets. This section has a twofold objective. First, it con-
tributes to the broader understanding of modern financial markets. Second, we
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will see that some specific participants either help stabilize the market or are often
blamed for various stylized facts. For instance, in Chapter 4, we will use specific
data to challenge part of a still very solid theory that attributes the so-called
square-root law to the behavior of a particular group of market participants.

Participants:

The following list is by no means exhaustive, but it reflects the classification used
in Chapter 4, where a more detailed and technical discussion is also provided. We
divide market participants into four broad categories and simply list them here.

• Low-Frequency Traders. These are probably the most numerous partic-
ipants in financial markets, although they account for only a small share
of daily trading activity (including limit and cancellation orders). Typical
examples include pension funds, asset managers, and some hedge funds that
take directional positions and hold them over long periods. However, the
label can be misleading: being a low-frequency trader (at least in our sense)
does not mean that these participants never interact with markets at high
frequency. Rather, it means their investment horizon is long, even though
their execution is necessarily done in the high-frequency world—since ac-
quiring a large position with a single order is virtually impossible, but would
also be very costly (see next paragraph about the liquidity game). Therefore,
low-frequency traders often either have an internal high-frequency execution
team, or they delegate execution to a broker.

• Brokers. A broker is a trader who executes orders on behalf of clients
—typically low-frequency ones. For example, an asset manager may want
to buy 1,000 shares of a given company within two days. They contact
a broker, whose job is to find counterparties in the market. The broker
typically commits to an average price and takes care of the execution over
time.

• Market Makers. These actors play a particularly interesting role in fi-
nancial markets. Historically, market makers were hired by exchanges to
reduce the spread between buyers and sellers. To illustrate, consider a mar-
ket where one participant wants to sell an asset for 12€, while another is
willing to buy it for 8€. The mid-price is 10€, but without anyone bridging
the gap, no trades occur. This situation is harmful in two ways: first, the
market becomes illiquid, making price discovery difficult and discouraging
trading due to the risk of being unable to exit a position. Second, a wide
spread is costly—whichever side initiates the trade must“cross the spread,”
potentially losing 4€ in this example.
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The market maker solves this by quoting on both sides—say, buying at 9€
and selling at 11€. This provides better prices to both buyer and seller,
while allowing the market maker to earn a 2€ spread if both sides are filled.
Although this might sound like an easy “win-win”situation, the reality
is quite the opposite. Today’s market environment—with strong competi-
tion and significant price impact—makes profitability challenging for market
makers. To summarize, market makers are usually paid by the exchange, to
constantly quote, at a defined frequency, on both sides of the orderbook.
They try to earn money from the spread while managing their inventory. we
will come back later to the ongoing debate about whether market makers
are beneficial or harmful to market stability, and try to offer some insights
on the matter.

• High-Frequency Traders. This label can also be confusing, since brokers
and market makers often operate at high frequency as well. Here, we define
high-frequency traders as institutions that are neither market makers nor
brokers, but that act on short-term signals and hold positions for very brief
periods. These are typically systematic hedge funds operating at intraday
frequencies. We use the term "systematic" because this type of trading must
be automated at such time scales—unlike "discretionary" trading, where
humans are still fast enough to make decisions themselves.

1.1.4 The liquidity game

Now that we have introduced the rules, the framework, and the main players, let
us add a bit of strategy before diving into the technical details. As one might
expect, the limit order book is the stage for fierce competition between agents,
which we divide into two broad categories—even though the line between them is
often blurred. On one side, we have the liquidity providers. These traders place
limit orders in the book, aiming to trade at favorable prices since they don’t have
to cross the spread.

Think back to our simple example: it is clearly better for a seller to get executed
at 12€ than to initiate a trade at 8€. However, placing limit orders isn’t as easy
or profitable as it might seem—it actually requires a great deal of skill, for three
main reasons.

First, by revealing their intentions, liquidity providers expose themselves to ad-
verse selection. In other words, they give away information about their own valu-
ation of the asset, but when they get executed, they learn very little about what
the counterpart knows. For instance, if you post a very large sell limit order at
12€ and it gets immediately filled, it might mean your price was too low—buyers
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may have had better information than you, and you just got picked off.

The second issue is opportunity cost. In this ultra-fast environment, placing a limit
order instead of executing immediately can turn out to be costly if the market
moves away from you—especially once others have seen your order sitting in the
book. In other words, it might have been better to trade at 8 right away than to
quote 12 and not being executed, if the new best bid drops to 6 just after.

The final challenge we briefly highlight is the so-called queue race. In highly liquid
markets, it is uncommon for a liquidity provider to be alone at a given price level.
Consequently, there exists a persistent competition to secure priority in the order
queue—that is, to be the first to be executed. This race, often done at microsecond
timescales, is a key factor underlying of "need for speed" in modern financial
markets [13]. It has driven substantial investments in low-latency infrastructure,
such as dedicated fiber-optic or microwave transmission lines, particularly among
high-frequency trading firms seeking even marginal timing advantages.

The second group consists of liquidity takers, who remove liquidity from the order
book by executing outstanding limit orders. We have already discussed the spread
cost associated with this type of execution, and the second part of this thesis will
be devoted to analyzing its broader impact—an additional and often substantial
component of transaction costs.

While the literature commonly distinguishes between these two groups—liquidity
providers and liquidity takers—on the grounds that they are, broadly speaking,
composed of different types of market participants, this separation is not always
clear-cut. Indeed, liquidity provision is typically associated with market makers,
whereas liquidity taking is more often carried out by brokers or lower-frequency
institutional investors such as hedge funds. We will examine this paradigm more
quantitatively in Chapter 4, but it is worth noting that in practice, most execution
strategies rely on a combination of both roles. For instance, a fund seeking to
acquire shares of a given asset may simultaneously execute market orders at the
ask while placing limit orders at the bid. Some well-known hedge funds have
even reported executing exclusively through limit orders, see [14], though being
traditionally part of the buy side.

Latent Liquidity

One of the key consequences of the strategic nature of trading is that the majority
of liquidity remains latent—that is, not yet revealed in the order book. This
is a fundamental characteristic of limit order books: the visible liquidity at any
given time typically represents only about 10−3 − 10−5 of the total daily traded
volume. Liquidity is progressively revealed throughout the trading day as a result
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of strategic interactions. This distinction is crucial when studying market impact,
as relying solely on the observed (revealed) order book can be misleading. In
reality, impact is more accurately understood in relation to the latent order book;
see [15] and Chapter 2 for further discussion. This notion of latent liquidity
also helps explain the splitting behavior that we will examine later. Suppose,
for instance, that an investor wishes to acquire 1% of a company’s shares. It
is plausible that there exists a counterpart—or a set of counterparties—willing
to sell such a quantity. However, because neither party wishes to reveal their
intentions, the transaction must occur gradually. The buyer must acquire the
shares incrementally, consuming the available revealed liquidity bit by bit rather
than all at once, so as to avoid detection. As a result, completing the transaction
may take several days. This illustrates a subtle interplay between the investor’s
predictive insight (i.e., the motivation behind the purchase) and the execution
strategy used to implement the trade. As we will show in Chapter 2, the execution
process itself plays a much more significant role than one might initially expect.

We are now concluding this first part of the introduction, which has provided
a concise overview of the functioning of modern electronic markets. While not
exhaustive, it highlights the key elements that will be central to the rest of this
thesis.

At the heart of these markets lies the limit order book, the arena for a complex
and captivating competition. On one side, long-term investors aim to build their
positions discretely, seeking to avoid detection and minimize market impact. On
the other hand, high-frequency institutions that actively manage their inventory
—aiming to keep it close to zero—engage in rapid trading strategies to extract
profit from the information revealed by these investors’ actions.

While market microstructure offers a rich landscape of strategic interactions, it is
also characterized by striking and well-documented stylized facts. We now turn
to a brief overview of these empirical regularities.

1.2 Stylized Facts of the Order Flow

The order flow consists of the sequence of messages—limit orders, cancellations,
and market orders—submitted to the exchange for a given asset. It is closely
monitored by market participants, as one can view the market as a black box: it
takes order flow as input and produces prices as output. The challenge, of course,
lies in the fact that the internal mechanisms of this black box are highly complex.
Understanding these mechanisms—at least partially—is one of the goals of this
thesis.
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For the sake of simplicity, we will focus in this introduction on the stylized facts
of trade flow, which are among the most robust and well-documented regularities
in market microstructure. We will examine limit and cancellation flows in more
detail in Chapter 8, though these tend to be less universal and more dependent on
market-specific behaviors. Indeed, limit orders and cancellations reflect trading
intentions rather than actual transactions. As such, their statistical properties
are often affected by high-frequency strategies—such as jittering 1, where limit
orders are placed and canceled in rapid succession—making their interpretation
more delicate. In contrast, trades (executions) generally provide clearer and more
interpretable signals of market activity.

1.2.1 Empirical evidence of trade sign autocorrelation
Trade-by-trade data is among the most accessible sources in market microstructure
and is often the first dataset encountered when analyzing financial markets at
high frequency. As a result, it has been extensively studied over the past 40
years. While many of the underlying mechanisms driving market behavior remain
mysterious — a central motivation of this thesis — there is broad consensus on
one key empirical fact: trade signs exhibit significant autocorrelation.

But what does this mean? Let εt denote the sign of a trade executed at time t (i.e.,
+1 for a buyer-initiated trade and −1 for a seller-initiated one). Autocorrelation
implies that εt statistically influences the sign of future trades εt+τ , even for
large time lags τ . More intriguingly, the autocorrelation function of trade signs
is observed to decay as a power law with respect to τ , indicating a long-memory
process — past order flow continues to impact future order flow over surprisingly
long timescales. Indeed, as evidenced by the data, see Chapter 6 for example, the
autocorrelation function C(l) reads :

E[εtεt+τ ] ∼
c0
τγ

(1.1)

For most assets, the exponent γ typically lies in the range [0.4, 0.7], and c0 ≈ 0.5
for most of liquid assets. A detailed study of γ values for stocks listed on the
Tokyo Stock Exchange, along with a technical discussion on how to compute an
unbiased estimate of this exponent is provided in [16].

To illustrate the implications of this power-law behavior, let us consider the exam-
ple introduced in [7]. Using realistic parameters c0 = 0.5 and γ = 1

2 , the autocor-
relation at a lag of 10,000 trades evaluates to approximately C(10,000) ≈ 0.005.
This indicates that when a buy market order is executed, the likelihood that an-
other buy order will occur 10,000 trades later surpasses the probability of it being

1Place and remove immediately orders in the spread, for strategic reasons
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a sell order by more than 0.5%. Consequently, the trade flow exhibits a notable
degree of predictability, even over extended timescales. This predictability seems
to be an apparent contradiction with the concept of market efficiency, which as-
serts that price movements themselves are unpredictable. This phenomenon is
often referred to as the efficiency paradox and will be a focal point of discussion
in Chapter 2.

1.2.2 Metaorders and the origins of long-memory in order flow

Two primary mechanisms have been proposed to explain this phenomenon. The
autocorrelation of trades may result from either herding or splitting. Herding
refers to the behavior where traders follow trends: for instance, a buy trade can
trigger a series of copy trades, as other traders want to imitate the initial trade
and replicate it with further transactions. This explanation is realistic, as it is
well-known that traders often do not act independently, and this behavior could
potentially explain the formation of bubbles and crashes, as discussed in Chapter
3. Another aspect of herding is the distinction one can make between trend and
value investors, see [17] for a more in-depth analysis.

Another perspective attributes this behavior to trade splitting. Due to the dy-
namics of the liquidity game and the latent liquidity it involves, traders are often
forced to divide their initial orders — referred to as metaorders — into several
smaller parts that are executed sequentially, known as child orders.

This assumption was initially introduced in the seminal paper by [18], and it
is widely recognized in the literature as the LMF hypothesis, a term we shall
also employ throughout this thesis. The authors propose a tractable quantita-
tive framework that not only elucidates the power-law behavior of autocorrelation
but also establishes a connection with the size of metaorders. Specifically, if we
assume that metaorder sizes s are distributed according to a power-law distri-
bution, Ψ(s) ∼ s−1−µ, it can be demonstrated that such splitting results in an
autocorrelated flow characterized by C(τ) ∼ τ−(µ−1). Why would the metaorders
distributions be a power law ? Here again, this assumption could be nicely linked
to the power-law distribution of company sizes, a phenomenon both predicted and
empirically validated in numerous economic studies, see [19] for example.

Although this debate had persisted for some time—largely due to the inherent
difficulty of observing the distribution of all metaorders in the market, as such
information is typically proprietary—it was resolved in [16], thanks to a unique
dataset that we also had the opportunity to work with (see Chapter 4). In that
study, the authors gained access to the complete set of metaorders on the Tokyo
Stock Exchange, allowing them to conclusively validate the splitting hypothesis.
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While the order flow exhibits a much richer set of stylized facts—which we will
explore in detail in Chapter 6—it is fair to say that, until now, most theoretical and
empirical studies were primarily based on two key observations: trade signs are
autocorrelated, and metaorders are embedded within the broader flow of orders.
Naturally, inferring metaorders from the raw order flow is extremely challenging
(despite many attempts, see [20, 21] for example, as such insights could lead to
highly profitable strategies). In this sense, markets preserve a form of efficiency.
Let us now turn to the central object of interest: the price process.

1.3 Statistical Properties of Price Changes
I will keep this section concise, but I strongly encourage interested readers to con-
sult Jean-Philippe Bouchaud’s lectures at College de France—both the manuscript
and the video recordings—which are publicly available here : [22].

1.3.1 The Louis Bachelier framework
It is impossible to begin a rigorous study of price dynamics without acknowledging
Louis Bachelier, a French mathematician whose 1900 doctoral thesis [23] laid
the foundations of quantitative finance. In his work Théorie de la Spéculation,
Bachelier introduced two core ideas:

• Asset price changes are fundamentally unpredictable, exhibiting random be-
havior.

• The accumulation of many small, independent price changes should, by the
Central Limit Theorem, lead to a Gaussian distribution of returns.

This led Bachelier to model the price p(t) as a Brownian motion - 5 years before
Albert Einstein :

p(t) = p(0) + σW (t), (1.2)

where W (t) is a standard Wiener process and σ the volatility. This implies that
price increments p(t) = p(t+∆t)−p(t) are independent and normally distributed:

∆p(t) ∼ N (0, σ2∆t). (1.3)

While elegant, this framework fails to capture key empirical features of financial
time series, such as fat-tailed return distributions—price changes are not, in real-
ity, Gaussian—and volatility clustering, whereby price changes exhibit temporal
correlations. It is worth noting that this simplified model is nonetheless the basis
the well-known Black-Scholes framework, widely used for option pricing (i.e., bets
on the future value of an asset) and various risk modeling applications. Although
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it is now widely acknowledged that the Black-Scholes model does not accurately
describe real market behavior, it remains a standard reference and common lan-
guage in the field of option pricing.

1.3.2 Market efficiency and price diffusion

Bachelier’s insights anticipated the Efficient Market Hypothesis (EMH) formal-
ized 70 years later. The EMH implies that asset prices incorporate all available
information, and thus price changes are unpredictable. Mathematically, if Ft is
the information set at time t, then:

E[p(t+∆t)|Ft] = p(t). (1.4)

Empirically, this translated in a very natural property of prices : they are diffusive.

Var[p(t+∆t)− p(t)] ∝ ∆t, (1.5)

Although this property may appear simple at first glance, it is both theoretically
challenging to reproduce—see Chapter 6—and fundamental to the functioning of
financial markets. Indeed, if prices exhibited even slight deviations from diffusive
behavior—being subdiffusive (where a positive price change is more likely to be
followed by a negative one) or superdiffusive (where positive changes tend to be
followed by further positive ones)—then the market would become arbitrageable
mathematically speaking. In such cases, it would be possible to generate statisti-
cally systematic profits, violating one of the core principles of modern financial
theory.

Figure 1.2: Example of three different processes, each characterized by their Hurst
exponent. Financial markets are often considered efficient because their Hurst exponent
is around the fragile equilibrium value of 0.5. Indeed, empirically, after a brief period of
mean reversion, prices follow a nearly perfect diffusive process - see Chapter 7, rendering

them essentially unpredictable. This property is very subtle to obtain, see Chapter 6
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1.3.3 Multifractal dynamics of returns
Empirical studies have long shown that return distributions are not only heavy-
tailed but also exhibit non-trivial scaling behaviors that are incompatible with
monofractal. Notably, the moments of aggregated returns over varying time hori-
zons scale anomalously as

E[|r(τ)t |q] ∝ τ ζ(q), (1.6)

where ζ(q) is a nonlinear function of q.

These observations are closely related to the phenomenon of volatility clustering,
whereby large price movements tend to be followed by large movements (of either
sign), and small movements by small ones—indicating persistent temporal depen-
dence in volatility. While volatility clustering reflects the autocorrelation structure
of volatility over time, multifractality captures a deeper, scale-invariant organiza-
tion in the distribution of returns, extending the notion of temporal dependence
to all statistical moments.

The idea of modeling financial time series with multifractal properties was notably
pioneered by Benoît Mandelbrot, see [24], who proposed that price dynamics might
follow a multifractal process rather than a Brownian motion. Building on this
intuition, Bacry et al. introduced the Multifractal Random Walk (MRW), see
[25], in which the return process is defined by a stochastic volatility model with
long memory:

rt = eωtϵt, (1.7)

where ϵt is a standard white noise and ωt is a Gaussian process with long memory.

Such models successfully replicate most of the statistical properties of prices, for
single asset or even indices, see a recent study in [26]. They are also closely related
with rough volatility models proposed in [27]. A microstructural interpretation of
these multifractal properties will be partially explored in Chapter 6.

1.3.4 Additional empirical regularities in price-volatility dynamics
A key stylized fact in the dynamics of asset prices is the presence of temporal
asymmetries linking returns and volatility, at least for stocks. The leverage effect
refers to the empirical observation that negative returns tend to be followed by
increases in volatility, whereas positive returns have a comparatively weaker effect.
This phenomenon can be quantified by the leverage correlation function

L(τ) = E[rtσ
2
t+τ ], (1.8)

which typically takes negative values for small positive lags τ , indicating that
past returns influence future volatility in an asymmetric way. This effect is often
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interpreted through mechanisms such as volatility feedback, dynamic hedging, or
investor risk aversion.

A closely related but subtly different phenomenon is the Zumbach effect, which
captures the breaking of time-reversal symmetry in volatility dynamics. It refers
to the empirical observation that past price trends—whether upward or downward
—tend to increase future volatility, but the reverse effect is less important:

cov(σ2t , (Rt,τ )
2) < cov(σ2t , (Rt,−τ )

2), (1.9)

Interested readers may refer to [28] for the theoretical framework, and to the excel-
lent empirical analysis by [29], which will also serve as a foundation for Chapter 9.
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Chapter 2

Theoretical foundations for
Price Impact

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are.
If it doesn’t agree with experiment, it’s wrong.

Richard P. Feynman
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2.1 What is price impact and how to measure it ?
Price impact is arguably one of the most fascinating phenomena—at least from
my perspective—and unquestionably one of the most critical for anyone engaged
in trading, as it can transform an apparently profitable strategy into a money
losing one: it is one of the underlying reasons behind the limitations – or the
challenges – of backtesting. Moreover, price impact is one of those specific topics
where academic research and industry practice closely intersect, since grasping
it is essential both for practitioners and for researchers seeking to uncover the
mechanisms behind price formation. A simple definition of price impact is the
variation in price caused by someone interacting with the market. While it is well
known that limit orders and cancellations can also impact prices (see [7], Chapter
13), most studies focus primarily on the impact of market orders, as they are
directly associated with transactions. In line with this common approach, we will
also concentrate in this introduction—and throughout the thesis—on the impact
of market orders.

While the concept of price impact is easy to state, its rigorous measurement is
more subtle. One must carefully specify: the impact of what, on which price, and
measured when. Let us consider a simple example to illustrate this. Suppose a
trade of sign εt ∈ {+1,−1} is executed at time t, where εt = +1 denotes a buy
order and εt = −1 a sell order. Let mt denote the mid-price immediately before
the trade.

Then, the price impact at a time lag τ > 0 can be defined as the difference
between the expected mid-price at time t+ τ given that the trade occurred, and
the hypothetical (counterfactual) mid-price that would have been observed at the
same time had the trade not taken place:

I(τ) = E[mt+τ | εt]− E[mt+τ | no trade at t]

This formulation highlights a key difficulty: while the first term can be estimated
from market data, the second term—what the price would have been in the absence
of the trade—is unobservable and very difficult to obtain. Thus, when studying
price impact, one has to be satisfied with an approximation of the real price impact.
We then define for the rest of the thesis price impact as :

I(τ) = E[mt+τ −mt | εt]

Considerable effort has been devoted to developing frameworks for generating
hypothetical market scenarios in order to answer a fundamental question: What
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would the price have been if I had traded at a specific time? This lies at the
heart of backtesting, which aims to simulate the outcome of a trading strategy
based on historical data. Its reverse formulation—estimating the impact of a
trade—relies on the same logic: inferring how the price would have evolved in the
absence of that trade. We explore this challenge in Chapter 8, but as we will see,
accurately reproducing the relevant stylized facts proves to be extremely difficult
(see [21]). That said, although we have not tested it, we believe that the framework
introduced in Chapters 6 and 7 holds promise for successfully reconstructing such
a market.

2.2 The origins of price impact theories —Information-
based models

The existence of price impact is, at once, both intuitive and paradoxical. From a
basic supply-and-demand perspective, the logic is straightforward: scarcity drives
value. If there is persistent buying pressure—ie one executed a trade at time t
—the price should rise accordingly. However, this notion appears to contradict
the Efficient Market Hypothesis (EMH), which asserts that prices instantly and
fully reflect all available information. Under this view, price changes should come
from variations in the asset’s fundamental value, not from the act of trading itself.
However, if a trader is perfectly informed, a change in the asset’s fundamental
value may be revealed through their trading activity. In this sense, the trade itself
becomes the mechanism by which information enters the market. This idea lies
at the heart of the following price impact model, that could be seen as the very
first theory of market microstructure.

2.2.1 The Kyle model
The Kyle (1985) model provides a foundational framework in which price impact
arises from asymmetric information. A single informed trader – knowing exactly
the fundamental value v of an asset – trades continuously in a market alongside
uninformed noise traders and a competitive market maker. The market maker sets
prices based on aggregate order flow Y = x+ u, where x is the insider’s informed
order and u ∼ N (0, σ2u) a trading noise, due to uninformed traders executions.

Kyle shows that the equilibrium pricing rule is linear: to break even, the market
maker should set: p = E[v | Y ] = λY, with impact parameter

λ =
σv
2σu

,

where σ2v is the variance of the fundamental asset value v. λ is often refereed as
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the Kyle-Lambda. The informed trader chooses x to maximize profits,

max
x

x(v − p) = x(v − λ(x+ u)),

leading to x = β(v − p). The model yields a linear and permanent price impact:
∆p = λx.

Kyle’s framework provides an elegant link between price impact and the gradual
revelation of private information, and it has long served as a foundational reference
in market microstructure theory. It also open the way for the influential concep-
tual distinction between informed traders and noise traders, which has inspired a
substantial body of subsequent research. While the model is theoretically appeal-
ing, two important concerns can be raised. First, the boundary between informed
and uninformed trading is often ambiguous. A trader acting on a long-term signal
—e.g., over a two-year horizon—may appear indistinguishable from a noise trader
when viewed over intraday timescales, especially if they trade while prices are
declining. Second, these models often assume that the aggregate impact of noise
traders averages out, contributing no lasting price effect. However, in practice,
trades devoid of fundamental information can exhibit herding behavior or follow
misleading signals, potentially reinforcing price movements. This raises questions
about the assumption that noise impact is neutral over time.

These issues point to a more complex interplay between information, behavior,
and impact—topics we will explore further in Chapter 9.

2.2.2 The Glosten–Milgrom framework
The Glosten–Milgrom (GM) model reuse this dichotomy between informed and
noises traders, to addresses a similar question through a different lens. In this
setup, a monopolistic market maker faces uncertainty about traders’ information.
Let qt ∈ {+1,−1} denote the type of incoming order. The market maker assumes
that informed trades occur with probability π; otherwise the trade is uninformed.

After observing an order qt, the market maker updates beliefs about the asset’s
value v via Bayes’ theorem:

P(informed | qt) =
πf(qt | v)

πf(qt | v) + (1− π)f(qt)
.

She sets bid and ask prices such that expected post-trade value matches pre-trade
price:

a = E[v | qt = +1], b = E[v | qt = −1].

This bid–ask spread compensates for adverse selection: the risk that informed
traders extract profit.
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Thus, the GM model is somewhat more sophisticated than the Kyle model and
offers a rationale for how market makers should set the spread to break even. In
continuous time, the GM framework leads to a linear permanent price impact
when informed trades occur. However, a key limitation of the GM model is its
assumption that the fundamental value of the asset is revealed at the end of the
trade. For a more flexible framework, one can refer to the Madhavan–Richardson–
Roomans (MRR) model; see [7], Chapter 16.2.1. Building on the same mechanism,
another extended model is proposed in [30], where a Bayesian market maker reacts
dynamically to the order flow. In this setting, the impact function becomes concave
—more consistent with empirical observations—though the model also presents
other limitations, see Chapter 4.

Limitations of Information-Based Models

Models based on informational asymmetries suffer from several key limita-
tions, at least in my view:

• They typically predict a linear market impact, which is at odds with
empirical findings—see Section 2.4 and Chapter 4.

• They often assume fully rational behavior from a specific class of
agents, usually market makers. Yet, market impact appears to be
a universal phenomenon, observed across various markets and partic-
ipants, suggesting it should not depend on the strategic behavior of
any one group. Furthermore, isn’t it optimistic to base a theory on
the rational behavior of agents ?

• They assume that agents possess some form of information, typically
understood as a predictive signal about future prices. This is a strong
assumption, and even if such information exists, there is no reason to
expect the associated impact to align precisely with the execution of
their orders.

• They generally suppose that the impact of noise traders cancels out,
neglecting the fact that uninformed trading can at least increase
volatility and may even generate persistent price movements or trends,
see Chapter 9

2.3 Market orders impact and the propagator framework
At the opposite end of information-based models are mechanical models, which
tackle a fundamental question: how can a correlated order flow produce diffusive
price behavior? Two main models address this issue—one argues that impact is
permanent but depends on trading history, while the other proposes that impact
is fixed in size but transient.
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2.3.1 Permanent impact: The Lillo-Farmer model

Lillo and Farmer (LF) propose that price impact is permanent, but its magnitude
varies depending on market conditions—especially liquidity. They aim to resolve
the efficiency puzzle by showing that when order flow becomes predictable, the
market adjusts impact accordingly to keep prices efficient.

Their model modifies the basic price impact equation as follows:

ri =
ϵif(vi)

λi
+ ηi,

where:

• ri is the return at trade i,

• ϵi ∈ {−1, 1} is the trade sign (buy/sell),

• f(vi) is a concave impact function of the trade volume vi,

• λi is a liquidity parameter

• ηi is a noise term.

Crucially, LF assume that liquidity adjusts dynamically: when buy trades are more
likely (predictable), liquidity for buys increases (i.e., λi increases), thus reducing
their impact. This ensures that the price remains diffusive despite persistent order
flow. In other words, the only visibile impact is the impact of surprises, see [7]
Chapter 13 for detail discussions.

The main limitation of this model is its reliance on the liquidity parameter λi,
which must be dynamically - and optimally - adjusted by market participants.

Furthermore, we will present in the remainder of this thesis several arguments
suggesting that the impact of orders cannot be permanent and ultimately decays
to zero. We will discuss this in Chapter 6.

2.3.2 The propagator model

Another possible resolution to the memory-diffusivity conundrum is provided by
the propagator model, first introduced in [31], which posits that each market order
has a decaying impact on price. The core idea is that the price can be expressed
as a linear superposition of past signed trades, each weighted by a time-decaying
kernel:

pt =
∑
s<t

G(t− s)εs, (2.1)
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where G(·) is the propagator function, encoding how the impact of a single trade
evolves over time.

One of the main strengths of the propagator model is its ability to reproduce price
diffusivity despite the presence of correlated order flow. Indeed, it is well estab-
lished that the order sign process εt exhibits long memory, with autocorrelation
E[εtεt+τ ] ∼ τ−γ . If we set the propagator to decay as G(τ) ∼ τ−β , then the price
variance evolves as2:

E[(pt+T − pt)2] ∼ T 2−2β+γ . (2.2)

To ensure price diffusivity (i.e., variance growing linearly with time), the exponents
must satisfy the condition β = 1−γ

2 .

This model yields two key insights:

• The impact of individual trades must eventually decay to zero.

• A precise balance—referred to as market efficiency—must exist between the
autocorrelation of trade signs (γ) and the decay rate of the propagator (β)
to preserve price diffusion.

Note that, although the LF model and the propagator model are based on phe-
nomenologically different mechanisms, it is straightforward to show that they can
be mathematically equivalent, see [7, 32].

Several extensions of the propagator framework have been proposed to account
for additional empirical features, always with the aim of explaining returns solely
through order flow. Without being exhaustive, I briefly mention two key contri-
butions for interested readers:

• A detailed empirical evaluation of refined propagator models—particularly
comparing Transient Impact Models (TIM) and History-Dependent Impact
Models (HDIM)3—was conducted in [33]. This analysis led to the intro-
duction of the Mixture Transient Impact Model in [34], which was later

2See [7], Chapter 13.2.1 for a detailed derivation
3HDIM2 introduces two distinct kernels κπ

′π′′
(j) that depend both on the current event type

and on the type of the most recent past event. The return is given by:

rHDIM2
t =

∑
π′′

δπt,π′′
∑
π′

∑
j≥0

κπ
′π′′

(j) δπt−j ,π′ εt−j ,

where πt, πt−j indicate whether the mid-price changed following the (t− j)-th transaction.
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revisited and further simplified into the Constant Impact Model4 in [35].
These models enabled Patzelt et al. to reproduce mid-price dynamics from
historical order flow with remarkable accuracy at high frequency—at least
for small-tick stocks.

• An empirical study presented in [36], which aligns closely with the perspec-
tive of this thesis. By fitting the propagator kernel to both proprietary and
public trade data, the authors demonstrate that short-term impact appears
highly universal. This finding supports one of our central claims: trades initi-
ated on private information (presumably unknown to the rest of the market,
we hope) affect market prices in much the same way as typical, uninformed
trades.

2.3.3 Aggregated impact
Aggregated impact is perhaps one of the first coarse-grained quantities to con-
sider in market microstructure. While the impact of individual trades is highly
noisy, the aggregated impact reveals much cleaner and more interpretable patterns,
which we now describe.

We begin by defining a time window of length T , typically measured in number of
trades, although it can also correspond to fixed real-time intervals. Within each
window (setting the beginning of the window at t = 0), we compute the order flow
imbalance I and the associated price change ∆p:

I(T ) =
∑
T

εt, ∆p(T ) = pT − p0

By averaging over many such intervals and repeating the procedure for various
values of T , we find the following empirical relationship, for small imbalances:

E[∆p | I, T ]√
T

=
I

Tχ
(2.3)

with χ ≈ 0.75, see [37]. For large imbalances, the impact saturates, see Chapter
6, 7. However, in general Eq. (2.3) means that the aggregated impact is linear in
the imbalance, up to a rescaling factor that depends on the window size T .

Such a law has been extensively investigated in [7, 37] 5, as it appears to be remark-
ably universal across markets. Interestingly, this behavior is partly reproduced by

4CIM2 is a limiting case of HDIM2 where the impact is both instantaneous and constant. It
takes the form:

rCIM2
t = ∆c δπt,c εt,

where ∆c is a constant impact coefficient.
5We will further confirm this behavior in Chapters 6 and 7 and demonstrate both empirically

and theoretically that our proposed theory successfully reproduces this non trivial stylized fact.
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the propagator framework (see [7], Chapter 13.4.3), although the predicted expo-
nent differs from the empirical one.

Another major puzzle is how to reconcile the linear form of aggregated impact with
the time-independent concave impact of metaorders, which we now introduce.

2.4 Metaorder impact —From empiric to models

2.4.1 The Square-Root Law
Understanding how prices react to the execution of metaorders—that is, sequences
of orders initiated by the same trader due to liquidity scarcity —is a central
challenge in market microstructure. Over the past two decades, a remarkably
robust empirical finding has emerged across markets and asset classes 6: the so-
called square-root law of market impact. Formally, it states that the average price
change I(Q) resulting from a metaorder of volume Q is of the form:

I(Q) = Y σD

(
Q

VD

)δ

, with δ ≈ 1

2
, Y ≈ 0.5 (2.4)

where σD is the daily volatility, and VD the daily traded volume of the asset.

This result is both puzzling and profound.

From a practitioner’s perspective, it offers a simple yet powerful rule for estimating
execution costs —a key component in optimal execution, transaction cost analysis,
and portfolio optimization. These costs are critical to the profitability of any
strategy, as we will detail in Section 2.5.

For academics, it poses two fundamental question:

• How can such a universal and simple law emerge from the highly complex,
noisy, and heterogeneous structure of financial markets?

• Why do trades affect asset prices, given that under the Efficient Market
Hypothesis (EMH), price fluctuations should only reflect changes in the fun-
damental value of the asset?

By let’s consider again Eq (2.4). The square-root law is surprising – and maybe
counterintuitive – for several reasons.

• First, it contradicts naive expectations that impact should grow linearly with
traded volume.

6The SQL has been widely validated on stocks [2, 38, 39] but also for futures [40] and even in
OTC market, see [41].
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• Second, it is largely independent of the execution schedule 7or the precise
order-splitting strategy, suggesting a form of universality. Indeed, impact
seems to depend only on one variable: Q.

• Finally, and most remarkably, it is concave: meaning that the market may
overreact for small volumes, and under react for larges ones

Note that the prefactor, known as the Y -ratio, is also of significant interest, as
it directly influences execution costs. While the concavity of the impact function
has been extensively studied, the Y -ratio remains more elusive and difficult to
analyze. In Chapter 6, we will derive an analytical expression for it, although
thorough empirical investigations are still lacking.

As for the concavity exponent δ, its estimated value has varied across studies —
typically between 0.3 and 0.7—due to biases or limited data availability. However,
a comprehensive analysis by Sato et al. [42] demonstrates that choosing δ = 0.5
is the optimal and universal choice.

Eq (2.4), which describes the so-called peak impact, is accompanied by two other
well-documented stylized facts regarding metaorders:

• Concave dynamic impact: During the execution of a metaorder, the
impact evolves in a concave fashion. Specifically, for ϕ ∈ [0, 1]:

I(ϕQ) ∼
√
ϕ
√
Q (2.5)

This suggests that the market tends to overreact at the beginning of the
execution and underreact toward the end.8

• Post-execution relaxation: After the execution is complete, the impact
begins to decay. Studying this relaxation is challenging, as price noise in-
creasingly dominates the signal. A long-standing debate exists as to whether
impact is truly permanent or ultimately decays to zero. While early stud-
ies, such as [43], reported that impact stabilizes around 2/3 of its peak
value, more recent work suggests that this apparent plateau may result from
restricting the measurement to intraday horizons. Given that relaxation un-
folds over timescales much longer than the execution itself, [44] showed that,
when measured over multiple days, impact indeed continues to decay and

7Of course, the SQL also has its limits. If a metaorder is executed too quickly or too aggres-
sively, the SQL may no longer hold. However, since traders generally execute orders correctly,
most metaorders observed in datasets tend to follow this law.

8Some argue that this effect could simply reflect typical intraday trading profiles. However,
we have verified that this behavior persists even for metaorders executed entirely in the early
morning or late afternoon, ruling out a purely intraday explanation.
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eventually becomes very small (≈ 0.1 of the peak impact). We will revisit
this question in Chapter 6.

Two technical facts that make the Square-Root Law even more puzzling

• The dynamics of price impact—both during and after execution—
are particularly intriguing given that metaorders are indistinguishable
from the background order flow. The market has no information
about when a metaorder begins or ends.

• Most traders execute cautiously, consuming less than the available liq-
uidity at the best quote (over 90% of child orders follow this rule). As
a result, individual child orders typically have zero immediate impact.

2.4.2 Data, the missing piece

The SQL is both central to market microstructure and notoriously difficult to
study for a given researcher. Observing it empirically requires access to executed
metaorders—a type of proprietary and highly confidential data. Moreover, since
such datasets usually originate from a single institution (as no one wants to share
their trading portfolio), they often suffer from biases and limited scope.

Fortunately, in Chapter 4, we present an empirical analysis based on an unbiased
dataset obtained directly from the exchange. Then, in Chapter 5, we introduce
an algorithm that generates realistic metaorders from public trade data, making
it possible for anyone to explore this phenomenon.

In fact, for those who can access real public trade data, we go one step further
in Chapter 7 where we propose a method to simulate realistic market environ-
ments. Applying the metaorder proxy to these simulations yields results that are
encouraging—though not yet perfect, and still the subject of ongoing research.

2.4.3 The puzzle of the Square-Root Law: A brief review of existing
theories

The SQL has inspired a wide range of theoretical efforts aiming to explain its
origin. However, to date, no model has provided a phenomenological explanation
that fully aligns with empirical stylized facts.9 To illustrate the difficulty of this
challenge, we first briefly present few theories that are known to be incompatible
with SQL, before discussing the most prominent one—which we will unfortunately
also refute in Chapter 4.

9Note however that such a law was deducted simply through a dimensional analysis in [45]
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A striking example is the propagator model, which accurately describes price
dynamics at the market order level but fails at the metaorder scale. In this
framework, the predicted impact is given by 10:

Iprop(Q) ∼ T−βQ (2.6)

This expression is incorrect in two ways: the peak impact is linear in Q, and it
depends on the execution time T . In its standard form, the propagator model
is therefore incompatible with the SQL. In Chapter 6, we propose a generaliza-
tion of this model to address these shortcomings. Still, it’s important to note
that propagator-based approaches do not offer a phenomenological explanation of
market impact.

A second theory, proposed by [43] and inspired by the LMF hypothesis, was ap-
pealing but ultimately refuted. The model predicted a relationship between the
concavity exponent δ of the impact function and the exponent µ governing the
distribution of metaorder sizes. However, using the extended TSE dataset, Sato
et al. [42] showed that these two exponents are, in fact, empirically uncorrelated.

Another early line of reasoning relates the SQL to inventory management, as
proposed in some of the first attempts to explain it [46, 47]. The idea is that a
metaorder of size Q, fully absorbed by market-makers, is gradually unwound over
a time horizon Toff. The associated price risk scales as:

Risk ∼ σ
√
Toff. (2.7)

Assuming Toff ∝ Q and inversely proportional to the market trading rate VT /T ,
we get:

Toff
T
∼ Q

VT
. (2.8)

Matching risk with compensation yields the impact:

I inv(Q) ∼ Y σ
√

Q

VT
, (2.9)

consistent with the empirical square-root law.

However, this argument neglects competition: inventory risk is diversifiable, and
charging each metaorder for it would lead to excess profits—quickly arbitraged
away by other liquidity providers. This would imply Y ≪ 1, contrary to empirical
findings where Y = O(1).

10see [7] Chapter 13.4.4 for exact derivation.
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The Locally Linear Limit Order Book theory (LLOB) Let us pause briefly
to introduce one of the most coherent models for the Square-Root Law - to my
knowledge - which we will explore further using the Tokyo Stock Exchange (TSE)
dataset. In [15], Donier et al. develop a minimal yet powerful theoretical frame-
work to describe the impact of metaorders, based on a reaction–diffusion model
of liquidity. The cornerstone of their approach is the concept of a Locally Linear
Order Book (LLOB), which assumes that latent liquidity is linear around the mid
price.

Let φ(x, t) = ρB(x, t)− ρA(x, t) denote the difference between the latent bid and
ask densities at price level x and time t. The dynamics of φ are governed by the
following reaction–diffusion equation:

∂φ

∂t
= D

∂2φ

∂x2
− νφ+ λ sign(pt − x), (2.10)

where:

• D is the diffusion coefficient, modeling the random reassessment of prices by
agents,

• ν is the cancellation rate of latent orders,

• λ is the rate of new order arrival,

• pt is the mid-price at time t, defined implicitly by φ(pt, t) = 0.

In the limit of slow cancellations and slow order arrival (i.e., ν → 0, λ → 0), the
stationary solution to Eq. (2.10) becomes locally linear around the mid-price:

φst(x) ≈ −L(x− pt), (2.11)

where L = λ/
√
Dν is an effective liquidity parameter. To incorporate the effect

of a metaorder, the model adds an external source term corresponding to the
execution of a metaorder of size Q over a duration T at a continuous execution
rate m = Q/T . The resulting price trajectory yt = pt − p0 satisfies an integral
equation of the form:

yt =
m

L

ˆ t

0

ds√
4πD(t− s)

exp

(
− (yt − ys)2

4D(t− s)

)
. (2.12)

The behavior of such an integral depends crucially on the comparison between m
and the market’s intrinsic execution rate J = DL. Two limiting regimes emerge
for the peak impact, ie I(Q) = y(T ):
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• Weak trading intensity m≪ J :

I(Q) ∼
√
m

Jπ

√
Q

L
(2.13)

• Strong trading intensity m≫ J :

I(Q) ∼
√

2
Q

L
(2.14)

Thus, the LLOB recover the SQL only in the regime of strong trading intensity.
In plain word, to follow the SQL, the metaorder has to be executed fast enough to
the the linear profile. However, in real market, m is typically much smaller than
J , as market participant try to be not detected by the rest of the market.

A way to mend this issue was proposed in [48] with the introduction of slow
(low frequency ) and fast (high frequency) traders, and the decomposition of J =
Jfast + Jslow.

Then by assuming that Jfast ≫ Jslow - thus J ≈ Jfast - one can obtain the SQL as
the metaorder is executed only against slow traders after a quick transition phase.
Thus, we don’t need m ≫ J anymore, but just m ≫ Jslow which is much more
realistic.

While this framework is certainly appealing—and, in my view, mathematically
beautiful—the extended model faces two main issues. First, as we will show in
Chapter 4, we find that J ̸= Jfast. Second, high-frequency traders (HFTs) are
always present during the execution of a metaorder. However, we will also argue
that, in a certain sense, the actions of HFTs may cancel each other out, and that
the resistance encountered during metaorder execution—leading to the SQL—is
ultimately driven by slow traders. We will return to these points in Chapter 4.

Finally, note that the LLOB framework also makes non-trivial predictions about
the post-execution decay: it predicts an infinite negative slope immediately after
the end of the execution, followed by a decay in t−1/2. This behavior is very close
from what is observed empirically, see [44] for an empirical investigation of the
decay.

2.5 The art of systematic investing : Alpha versus Impact
Although it is not the main focus of this thesis, let us briefly present the ecosystem
of an investment strategy to shed light on why the SQL is so important. For
interested readers, an extensive and insightful reference is K. Webster’s Handbook
of Price Impact [49] - I highly recommend.
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Different teams for different skills: A hedge fund typically consists of mul-
tiple specialized teams. In this section, we focus on two key groups: the alpha
team, which is responsible for designing predictive trading signals (or "alphas"),
and the execution team, whose role is to carry out orders in a way that minimizes
transaction costs and price impact. Of course, there are many types of alpha—
ranging from high-frequency to low-frequency signals—derived through statistical
arbitrage, machine learning, alternative data, and more. And naturally, execution
strategies may also incorporate short-term alpha to optimize order placement and
timing.

The execution paradox: One might think that the true art of investing lies
entirely in alpha generation—that is, finding some way to predict future prices
—while execution is merely a mechanical step to enter a position. However, in
reality —at least to my modest knowledge—execution plays also a critical role.

Consider a portfolio manager receiving a prediction from the alpha team: a fancy
machine learning model forecasts that a given stock will rise by 10% over the next
month. Naturally, the manager wants to take a position and asks the execution
team to buy Q shares (we will discuss how to determine Q in the next section).
But in doing so, the very act of buying the stock creates market impact, pushing
the price upward. If one believes that impact is inherently tied to information,
this price move may appear as a realization of the alpha prediction—it looks like
the market is validating the signal.

However, as we will argue throughout this thesis—and, I hope, convince the reader
—most of the observed impact is mechanical in nature, not informational. There-
fore, one should subtract this mechanical component from observed price changes.
When doing so empirically, as we will comment in Section 2.6, impact often turns
out to be much larger than the alpha prediction itself.

This leads to a fundamental tension: depending on whom you ask, there is ei-
ther no such thing as impact—only skilled traders acting on alpha—or there is no
meaningful alpha—just the mechanical footprint left by large trades.

What is the real alpha within the mechanical impact framework: A
striking implication of the mechanical view of market impact is a shift in the way
we think about alpha. Traditionally, alpha is associated with predicting economic
fundamentals—such as anticipating macro announcements or firm-specific news
before they are priced in. But in a market where trades – and even orders, see
Chapter 8 – themselves move prices, another perspective emerges.

In such an environment, alpha increasingly reflects the ability to anticipate what

35



Chapter 2.

other market participants will do—because their actions will have an impact on
prices. Rather than only forecasting the content of an economic release, it becomes
more relevant to predict how others will interpret and react to it, and how this
collective response will move the market. In this sense, alpha is not necessarily
about knowing more, but about being ahead in understanding the flow of future
orders.

We have a saying, which is that “The impact of others is our alpha,
and vice versa.” — Jean-Philippe Bouchaud

This helps explain certain seemingly paradoxical situations: it is not uncommon
to see breaking news—such as the outbreak of a war or a major political shift
—yet observe that stock prices remain flat, even for companies that are clearly
economically exposed. While some strong believers in the EMH might argue that
such news was already anticipated and priced in, a more plausible interpretation
—especially when the event was unpredictable—is that prices didn’t move simply
because market participants did not react. In that sense, price reflects more the
collective beliefs and reactions of traders than any objective economic reality.

Alpha, then, becomes less about discovering fundamental value and more about
anticipating how others will trade. Understanding the timing, direction, and struc-
ture of future order flow can be more profitable than trying to determine what
the "correct" price should be.

We will explore the relationship between impact and alpha in greater detail at the
end of Chapter 6, in light of the new theories introduced in this study.

Optimal execution: How to size your trade The delicate balance between
execution and alpha is at the heart of what is known as optimal execution—a
problem that has sparked an extensive body of research, given the substantial
financial implications involved (see [50] for reference). While a full description
lies beyond the scope of this thesis, we briefly present a useful rule of thumb to
estimate impact.

Suppose you have an alpha signal α, and you wish to trade a quantity Q in
order to maximize expected profit. The key question becomes: knowing that your
trade will move the market, how much of your alpha will be lost to impact? Or
equivalently, how much should you trade?

Your expected PnL can be written as:

PnL = αQ−Q · I(Q), (2.15)
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where I(Q) is the market impact function. Assuming permanent square-root im-
pact, i.e. I(Q) ∼

√
Q, the optimal trade size is such that impact costs eat up to

2/3 of the alpha, representing a substantial cost. Note that this represents only
the impact cost, under the permanent impact hypothesis. In reality, one must
also account for impact decay, fees and spread costs, which further exacerbate the
situation.

2.6 The unknowns of price impact

To conclude this brief introduction to the fascinating world of price impact, let
us highlight some of the central open questions that continue to puzzle both aca-
demics and practitioners. Shedding light on them is one of the core ambitions of
this thesis.

• How can the propagator model and the square-root law be recon-
ciled?

A fundamental challenge is to develop a unified framework that bridges mi-
croscopic models of individual market order impact—such as the propagator
model—with the mesoscopic regularities observed in metaorder execution, ie
the three stylized facts of the SQL. Since child orders are indistinguishable
from the surrounding order flow, one would expect that a consistent theory
could recover SQL-like behavior from first principles. Moreover, empirical
studies show a striking asymmetry between the execution and relaxation
phases of a metaorder: impact builds up rapidly during execution, while its
decay is slower and resembles the long-memory relaxation patterns found in
the order flow itself. A satisfactory model should naturally account for this
asymmetry.

• How to reconcile price diffusivity, volatility, and the square-root
law?

Another pressing question concerns the statistical properties of prices result-
ing from trading activity. Models assuming a square-root impact often pro-
duce subdiffusive price dynamics, as shown for instance in the no-arbitrage
framework of [51]. This suggests that metaorders alone may not be sufficient
to explain the observed diffusive behavior of prices. It raises the possibil-
ity that price diffusivity originates from exogenous sources such as news,
or from a component of volatility that is independent of trade execution.
Establishing—or refuting—a robust link between metaorder execution and
long-term volatility is therefore essential to our understanding of market
dynamics.
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• Is metaorder impact permanent or transient?

Perhaps the most controversial question concerns the nature of impact itself.
While the square-root law is now widely accepted empirically, its interpre-
tation remains debated. One school of thought argues that impact is (at
least partly) permanent and reflects the informational content—the alpha—
of the metaorder. Another perspective posits that impact must decay to
zero, with any permanent component being negligible. So, is there truly a
permanent component of impact? If so, how does it relate to alpha? And if
impact fully reverts, then what exactly is alpha measuring? For interested
readers, a lively ping-pong debate takes place between Gabaix et al. [52] and
Bouchaud [53] on the Inelastic Market Hypothesis, related to those topics.

These fundamental questions are not merely theoretical curiosities: they directly
impact how we understand, predict, and manage trading costs, and more broadly,
how we conceive price formation itself. And remember, price formation is, after
all, the mechanism through which value (or at least price) is assigned to goods,
commodities, stocks etc... in modern economies. After a detailed empirical study
in Chapter 4, leveraging a unique dataset, we will return to these core issues in
Chapters 5 and 6, where we aim to provide new insights and possible answers
through a novel and unified approach of market microstructure.
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Theoretical foundations for
Market stability

Markets can remain irrational longer than you can remain solvent

John Maynard Keynes
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Market stability is a topic where physicists—particularly those studying complex
systems—may feel very much at home. In nature, it is common for large, unex-
pected macroscopic events to emerge from the collective behavior of many inter-
acting components, especially near critical points or during phase transitions.

39



Chapter 3.

3.1 Unstable markets?

3.1.1 Flash crashes: a symptom of criticality ?

On May 6, 2010, U.S. equity markets experienced a dramatic collapse and recovery
within minutes. The Dow Jones Industrial Average – and many others American
indices, see Fig. 3.1 – dropped nearly 9% before rapidly rebounding without
apparent economic reasons. And this kind of crisis is not a simple outlier, indeed
those large financial breakdown have occurred many times in the last century
(period for which there is easy access to reliable financial data.

Such “flash crashes”cannot be explained by standard models of market equilibrium,
ie the EMH hypothesis or by the classic Brownian price theory we presented earlier
one.

Figure 3.1: Intraday evolution of the S&P Mini on May 6, 2010. The red curve shows
the mid-price, which presents a drop of nearly 10% without any identifiable economic
trigger. The blue curve represents a moving average of the absolute traded volume.

Regarding the 2010 flash crash, extensive investigations have been conducted (see
[54]). The event was triggered by a single, exceptionally large limit order executed
by an algorithm developed by a day trader in the UK. That such a single trader
could - temporarily - destabilize the entire U.S. market underscores how seem-
ingly small fluctuations can cascade into large-scale market disruptions—much
like avalanches in self-organized critical systems

40



Chapter 3.

3.1.2 Price jumps in the Limit Order Book

To not speak only of major liquidity crises, price jumps are a frequent and signif-
icant phenomenon observed in the limit order book. In particular, [55] analyzed
300 highly liquid NYSE stocks and found that, on average, there is roughly one
anomalous price jump per day. Here, an anomalous price jump is defined as a
one-minute binned return exceeding four standard deviations (4σ), after proper
volatility renormalization. If prices genuinely followed a Gaussian distribution—as
posited by the EMH and assumed in the Black-Scholes framework—such extreme
fluctuations would be extremely rare, with a daily probability of around 10−5.

More interestingly, the authors differentiate between exogenous and endogenous
jumps by cross-referencing jump times with news releases from Bloomberg11. Two
key findings emerge:

• The temporal profile of jumps differ substantially depending on their classi-
fication as endogenous or exogenous.

• Exogenous jumps, triggered by news, account for only about 1% of all de-
tected jumps.

A notable extension of this work was provided by [56], who employed wavelet
techniques to more accurately identify and characterize jumps in price series.

The frequent occurrence of these jumps and liquidity shocks highlights an under-
lying instability in financial markets. Crucially, most of these extreme events—
extreme in size, though not necessarily in frequency as they happen once a day
—appear to originate endogenously from the market’s internal dynamics, under-
scoring again the complex, self-organized nature of market instability, that is yet
to be proven.

3.1.3 The excess volatility puzzle

One of the most enduring critiques of traditional financial theory is the so-called
excess volatility puzzle, first formally articulated by Robert Shiller in the early
1980s [57]. According to the Efficient Market Hypothesis (EMH), prices should
reflect all available information, adjusting only in response to new, exogenous
signals. Shiller’s translates that by computing the volatility of a stock relative
to the volatility of discounted future dividends. And by doing so, here revealed
a stark discrepancy : the actual volatility of financial markets is an order of
magnitude larger than what can be justified by fundamental news alone. This

11Each jump was classified based on whether it coincided with a relevant news event for the
corresponding stock near the jump time.
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mismatch implies either that agents are systematically mispricing assets, or that
prices are being driven by endogenous factors unrelated to fundamentals.

Numerous studies have sought to explain this longstanding enigma. More recently,
Kurth et al. [17] revisited the issue through the lens of the Chiarella model,
demonstrating that fundamental volatility could be up to four times smaller than
observed market volatility—thereby reexamining the excess volatility puzzle. In
particular, Guyon et al. [58] demonstrated that volatility is remarkably well cap-
tured by path-dependent models, giving yet another proof of the predominance of
its endogenous component. Lastly, a very interesting line of research focuses on
rough volatility, as discussed in [26, 27].

Intermediate Conclusion

The frequent occurrence of liquidity crises triggered by endogenous dynam-
ics, the fact that most price jumps also originate endogenously, and the
evidence that volatility itself is largely endogenous—all these observations
point toward markets operating near a critical point. This stands - again-
in stark contrast with the EMH. We will dive deeper into these phenomena
in Part III. But first, let us briefly outline the tools—and the hedge ?—that
physicists have when study this aspect of financial markets.

3.2 Physicists’ tools to model the Limit Order Book

3.2.1 Hawkes processes
The concept of Hawkes processes was originally developed in the context of seismol-
ogy, where it was observed that earthquakes tend to trigger subsequent events—
aftershocks—resulting in a self-exciting temporal structure. In such a framework,
the probability of an earthquake occurring increases if another one has recently
taken place. This self-exciting behavior is also observed in financial markets: trad-
ing activity tends to cluster, with trades being more likely to occur shortly after
other trades.

Hawkes processes constitute a particular class of inhomogeneous Poisson point
processes in which the intensity function ϕ(t) encapsulates both an exogenous
component and an endogenous component that depends on the past history of
the process itself. Formally, a Hawkes process is defined as a point process whose
intensity evolves according to:

ϕ(t) = ϕ0(t) +

ˆ t

−∞
dN(u)Φ(t− u), (3.1)
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where ϕ0(t) is a deterministic baseline intensity, and Φ(t) ≥ 0 is a non-negative
kernel function that quantifies the influence of past events on the current intensity.
In most applications, the kernel Φ(t) is taken to be strictly decreasing to reflect
the decaying influence of older events. Interested readers are referred again to [7],
Chapter 9, for a more detailed presentation of Hawkes processes.

A key quantity of interest is the endogeneity ratio η, also known as the branching
ratio, defined as:

η =

ˆ ∞

0
Φ(t) dt. (3.2)

Empirical studies—see [59, 60]—suggest that in equity markets, η is often greater
than 0.7 - when fitted on price changes. This indicates that financial markets
operate close to a critical point, where small perturbations can propagate and
amplify significantly 12.

However, it is important to highlight that the application of Hawkes processes to
financial data has received criticism. In particular, they may not be ideally suited
for modeling order flow, which exhibits long memory. This long-range dependence
can naturally drive fitted Hawkes models toward criticality, potentially obscuring
the underlying dynamics. We will revisit this issue in Chapter 8.

That said, we will nonetheless make use of Hawkes processes in Chapter 9 to model
feedback mechanisms and endogenous loops within market dynamics.

3.2.2 Agent-based models: The Santa Fe approach
Another powerful tool that has developed rapidly in recent years—particularly
in economics—is the so-called agent-based model (ABM). In statistical physics,
where systems are typically composed of a large number of identical elements (such
as spins or atoms), it is common practice to simulate these systems to validate
theoretical predictions. Over the past decade, this simulation-based approach has
been increasingly adapted to economic problems. Instead of modeling atoms, one
simulates a large number of economic agents, defines rules for their interactions,
and observes the resulting macroscopic behavior. A compelling application of this
methodology can be found in [61], where agent-based modeling is used to study
the post-COVID economic recovery.

In the context of market microstructure, one of the first—if not the first—agent-
based models was introduced during the Santa Fe conference, giving rise to what
is now known as the Santa Fe model 13. This pioneering model explored the

12η = 1 being the critical point...
13To be more precise, there are two distinct models referred to as the Santa Fe model: the

first is a conventional agent-based model that represents various agent types, including informed
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dynamics generated by a large number of traders placing orders randomly in a
limit order book. Surprisingly, despite its minimal assumptions, the resulting
price process more or less resembled real market prices, although it tended to be
– strongly – mean-reverting. For a comprehensive overview of the stylized facts
captured by this model, we refer the reader to Chapter 8 of [7].

Several extensions of the Santa Fe model have been proposed. For instance, in
[62], the authors introduced a simple tuning of the aggressiveness of market orders
—specifically, the proportion of the best quote consumed by a trade—and demon-
strated that this modification alone suffices to recover a diffusive price behavior.
Another significant reference is the work by Ravagnani et al. [63], in which the
authors introduced an extended version of the Santa Fe model that incorporates
the SQL. However, reconciling this model with price diffusion remains challenging.

Here, we are more interested in the development proposed in [64], where the au-
thors added a single rule to the behavior of otherwise random traders: a feedback
mechanism that makes agents responsive to past price trends. This modification
led to the emergence of liquidity crises, and more precisely, revealed that the limit
order book undergoes a second-order phase transition, that we will define in the
next Section.

This result is especially intriguing, as liquidity crises—and extreme price jumps
—are both frequent in financial markets and notoriously difficult to understand
analytically. Agent-based models thus offer a promising and efficient framework
to study such phenomena. In Chapter 9, we will develop a model in this spirit.
But before doing so, we first introduce briefly the concept of phase transition.

3.2.3 Phase transition theory

Being exhaustive about phase transitions is clearly beyond the scope of this brief in-
troduction 14. In a nutshell, it is well known in physics that a system—such as one
liter of water—can exist in different phases (solid, liquid, or vapor). Transitions
between these phases can be triggered by tuning just a few parameters, typically
pressure and temperature. What is striking is that although the underlying con-
stituents remain identical (water molecules, in this case), their organization leads
to vastly different macroscopic properties: ice and vapor behave very differently,
despite being composed of the same molecules.

traders and noise traders. The second model, which is used in this thesis, also acknowledges the
presence of different agents but directly focus on aggregated observables, ie the different order
flows.

14For interested readers, a great reference in my view for phase transition theory is: https:
//www.lpthe.jussieu.fr/~leticia/TEACHING/ICFP2021/PhaseTransitionsICFP-Chapter.pdf
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A similar analogy can be drawn for limit order books. With just a few changes in
the system—such as memory of market participant for example—the market can
shift from a stable regime, where prices are well-defined and liquid, to a regime
resembling a liquidity crisis. In this context, the transition is dynamic, since the
number orders present in the orderbook may evolve over time.

What is particularly interesting is the signature of a phase transition—the point
at which the system crosses from one phase to another. At this critical point,
the system becomes scale-invariant or "fractal", and several observable quantities
begin to follow power-law scaling. These include, depending on the system, the
susceptibility, correlation length, specific heat and so on.

The exponents associated with these power laws serve to characterize the nature
of the phase transition. Remarkably, most transitions fall into a limited number
of universality classes, each defined by a specific set of critical exponents. This el-
egant framework from statistical physics offers deep insight into seemingly diverse
systems undergoing transitions.

Returning to financial markets, the analogy with physical phase transitions proves
surprisingly relevant. As we will demonstrate in Chapter 9, in a modified version
of the Santa Fe model, several key quantities—such as the spread, susceptibility,
and others—exhibit power-law scaling close to criticality. We will explore how
to derive the corresponding critical exponents, thereby aiming to characterize the
nature of these transitions.

3.2.4 Power-laws everywhere ?

Let us use this brief discussion of phase transitions to address a common criticism
of Econophysics—one that I have frequently encountered over the past three years
—namely that“physicists see power laws everywhere.”While this remark is not
entirely unfounded, I would argue that physicists are, in fact, justified in doing so,
for at least three key reasons:

• First, power laws indeed arise naturally in many physical systems and pro-
vide remarkably good fits to a wide range of empirical distributions observed
in nature—such as the energy of earthquakes, solar flares, or avalanche sizes
in sandpile models. As we discussed earlier, they often emerge from systems
undergoing phase transitions. Power laws are also prevalent in economics,
a classic example being the Pareto distribution of wealth: roughly 20% of
individuals hold 80% of the wealth, and this pattern recursively holds within
the wealthiest 20% - ie being self invariant. In short, once elements within a
system begin interacting, the assumptions underpinning the Central Limit
Theorem break down, and power-law signature can emerge, with extreme
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events becoming more likely due to cascading effects and collective dynam-
ics. For a more in-depth discussion, see the seminal work of Nassim Nicholas
Taleb [65] and his Incerto series (The Black Swan, Skin in the Game, etc.).

• Second, it is well known that power laws can be efficiently approximated
by a sum of exponentials, providing a practical mathematical tool to bridge
exponential and power-law behaviors [66].

• Finally, in statistics, there is a well-known adage that every fancy model
ultimately reduces to a form of linear regression. And indeed, it remains a
powerful tool for data analysis. However, when describing phenomena that
unfold over multiple timescales, it is often more appropriate to work with
the logarithm of variables rather than the variables themselves. But then,
performing a regression in log-log space is essentially equivalent to fitting a
power law!

To conclude, in Econophysics—as I see it—researchers do not necessarily claim
that underlying processes follow an exact power law. Rather, power laws often
provide robust and useful approximations over a broad range of observed data,
making them a valuable modeling tool. Crucially, many phenomena deviate sig-
nificantly from Gaussian assumptions—widely held in economics or quantitative
finance—and thus require fat-tailed distributions to be described accurately, a fact
often overlooked by conventional wisdom !

3.3 The Unknowns of market stability

To summarize this introduction, financial markets exhibit several symptoms sug-
gesting they operate near a critical point. At low frequencies, phenomena such as
flash crashes and liquidity crises occur far more frequently than standard models
would predict, often with terrible consequences for the global economy. At high fre-
quencies, markets display an anomalously high rate of extreme price movements—
for instance, price jumps exceeding 4σ occur on average once per day even among
the most liquid stocks in the world. Notably, approximately 99% of these jumps
are not associated with identifiable news events, indicating endogenous origins.

To investigate this apparent criticality, we will first introduce in Chapter 8 a Vector
Autoregression (VAR) framework designed to capture the most probable direction
of market evolution. By performing a principal component analysis (PCA) on the
system’s dynamics, we identify a dominant eigenvector whose associated eigen-
value approaches one. This suggests that the system enters a regime where it
is almost "certain" to evolve in a specific direction, highlighting strong internal
coordination—and this direction is exactly the one of a liquidity crisis.
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Finally, in Chapter 9, we will propose an extended version of the Santa Fe model
incorporating realistic feedback mechanisms. This will allow us to test whether,
under plausible behavioral rules, the system still exhibits a second-order phase
transition, thereby reinforcing the analogy between market dynamics and critical
phenomena in physics.
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Price Impact





Chapter 4

Empirical Analysis of the
Microscopic Foundations of the
Square-Root Law

The scientist does not study nature because it is useful, he studies it because he takes
pleasure in it, and he takes pleasure in it because it is beautiful.

Henri Poincaré

To better understand the Square Root Law, this thesis begins by analyzing price
impact using a detailed dataset from the Japanese stock exchange, which contains
trader IDs for all orders submitted between 2012 and 2018. Our analysis reveals
that the square-root price impact law has microscopic roots, evident even at the
level of individual child orders, provided there is enough time for the market to
"digest" them. Additionally, we find that the mesoscopic impact of larger orders, or
metaorders, results from a "double" square-root effect: a square-root dependence
on individual trade volume coupled with an inverse square-root decay over time.
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From:
The "double" square-root law: Evidence for the mechanical origin of market impact

from the Tokyo Stock Exchange
G. Maitrier, G. Loeper, K. Kanazawa, JP. Bouchaud
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4.1 Introduction

As presented in Chapter 2, the Square-Root Law (SQL) for price impact is ar-
guably one of the most robust empirical regularities discovered in the last 30 years
– see [38, 40, 47, 67–69] and [7, 49] for reviews. It states that when executing a
buy (resp. sell) meta-order of total size Q, sliced and diced into N child orders of
size q = Q/N , the price on average moves up (down) by an amount proportional
to
√
Q. Price impact is, quite remarkably, found to be approximately independent

of both N and of the total time T needed to achieve full execution [70]. In other
words, provided the participation rate is not too large, average price impact only
depends – to a first approximation – on the total volume traded Q, but not on
execution schedule [7].

Such a square-root dependence, and its apparent universality across a wide variety
of markets [7], is surprising and non-intuitive.
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Several theoretical ideas have been put forth in the literature to explain non-
linear impact. Some models predict a concave price impact Qδ with δ ≤ 1 related
to the power-law tail exponent µ of the executed volume [71] or the power-law
tail exponent γ of the time autocorrelation of the sign of market orders [18, 43].
However, as recently shown by Sato and Kanazawa [72] using ID-resolved data
from the Tokyo Stock Exchange (TSE), the predicted relations between δ and µ
or γ are not borne out by the data: whereas α and γ significantly differ between
stocks, exponent δ remains stubbornly anchored around δ = 1/2, i.e. the value
corresponding to the square-root law.

Numerous other models exist, including those mentioned earlier. For more details,
see [30, 68, 73, 74]. Despite its critical importance for both financial microstructure
and an asset pricing [52, 53], the very origin of this central phenomenon remains a
topic of debate. The universality of the phenomenon suggests a purely mechanical,
rather than informational, origin, however this point is controversial and at odds
with most of the economics literature on the subject, starting with the famous
Kyle model [75]. The aim of the present Chapter is to give more credence to
the “mechanical hypothesis” of the square-root market impact law using an ID-
resolved data set from the TSE. Our main results are the following:

• The square-root impact law of metaorders is already valid for child orders,
provided one waits long enough for the market to digest these orders.

• The square-root impact law of metaorders emerges from a “double” square-
root behaviour: the dependence of the impact of child orders on their indi-
vidual volume and the inverse square-root relaxation of this impact.

• There does not seem to be anything special about the impact of the child or-
ders of a given metaorder – in fact all market orders appear to impact prices
in the same manner on average. Correspondingly, the impact of synthetic
metaorders, reconstructed by randomly scrambling the identity of traders,
is identical to the impact of real metaorders. This is our major piece of
evidence for a mechanical origin of the square-root law.

We also garnered further information shedding light and/or putting constraints
on the interpretation of the square-root law:

• “Fast” traders, for which the holding period is less than a day, represent
between 50% and 60% of the executed market orders. This includes mar-
ket makers (HFT) and short term traders. Correspondingly, the fraction of
market orders executed against “fast” traders represents nearly half of the
exchanged volume, a number far too low to vindicate the standard interpre-
tation of the square-root impact within the LLOB framework [76]. Since
this empirical fact is inconsistent with the standard LLOB framework, it
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motivates us to propose a new interpretation of the LLOB framework, as
presented in this Chapter.

• One can define refill sequences for liquidity providers. One finds that the size
of those sequences is also power-law distributed, as was found for metaorders
in [16], following the suggestion of Lillo, Mike & Farmer [18].

• Once a buy (sell) market order is executed, liquidity providers tend to in-
crease (decrease) their offered price. Such a price degradation however de-
creases as a power-law of the number of trades already executed, with a
prefactor that separates aggressive and wary liquidity providers.

The outline of the Chapter is as follows: Section 4.2 describes the dataset and
presents some general facts about execution. Section 4.3 investigates the cumu-
lative price impact of child orders and proposes a non-linear propagator to ratio-
nalize the empirical results. In Section 4.4, we extend results from the previous
Section to all market orders, and we introduce a method for generating synthetic
metaorders that are found to follow exactly the same square root law as real
metaorders. In Section 4.5, we scrutinize the opposite side of market orders by
analyzing the behavior of liquidity providers, and we present our conclusions in
Section 4.6.

4.2 Data description and preliminary observations

4.2.1 A unique dataset
Our study is based on a dataset from the Tokyo Stock Exchange (TSE), provided
by the Japan Exchange Group (JPX) for academic purposes only and already used
in [16]. The dataset contains all orders sent to the exchange, with a unique order
ID, a virtual server ID, the price and type of the order, the volume and price of
the best quotes, for all stocks available on the exchange from 2012 to 2018. Here
the virtual server ID is the unit of trading accounts on the TSE. Technically it is
not a membership ID (i.e., the corporate level ID) because any trader may have
several virtual servers to avoid the submission-number limit during a fixed interval.
However, one can reconstruct an effective trader ID, called the Trading Desk, by
properly aggregating those virtual server IDs (see [16, 77] for the details). In this
Chapter, the Trading Desks are referred to as trader IDs.

We focus on the top 100 liquid stocks of the exchange, including 10 ETFs. After
anonymizing all assets names (for confidentiality reasons), we only kept orders
submitted during continuous double auctions trading sessions: there are two ses-
sions each day in the Japanese market, during 09:00 - 11:30 and 12:30 - 15:00. We
discarded orders submitted during the 10 first and last minutes of each sessions,
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as they might be affected by special conditions. In the following, we will refer to
these two distinct periods as two separate days, with a slight abuse of language.

We define a metaorder as a sequence of consecutive market orders (“child orders”)
of same sign (buy or sell) submitted by the same trader during a given session.
The dataset is unique for two reasons: (i) we have access to a colossal unbiased
set of metaorders and (ii) we can analyze traders behaviors as we can assign each
orders to a given participant.

Item (i) is particularly important regarding the claim that impact is an universal
mechanism, independent of the type of traders and the information content of the
trades [7, 36]. Indeed, access to metaorders data is rare (the Ancerno dataset
being one exception [44, 78, 79]), and most of datasets used in the literature are
proprietary and may be plagued by conditioning effects [7, 49].15

Item (ii) represents an interesting opportunity to categorize traders as market
makers (MM), high frequency traders (HFT) or low frequency traders, see 4.2.3
and understand better their typical impact on the market. For example, the long
term debate about the benefits of HFT for market stability has been dramatically
improved with this kind of dataset [77, 81]. In addition, these identifiers enabled
us to analyze the behavior of liquidity providers, which is only possible if we have
access to the ownership of all limit or cancellation orders, see Section 4.5.

15Note however that CFM data [38] was acquired in such a way to minimize conditioning effects
such as those discussed in [7], ch. 12.3, see also [80].
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4.2.2 General stylized facts about metaorders execution

Figure 4.1: Top graph: The blue points represent the average time between two child
orders of the same metaorder (in seconds), as a function of f = Q/VD. The red points

are the average number of child orders as a function of f = Q/VD. The average red
curve can be approximately fitted by a power law f0.3, for f ≥ 10−3. The shaded areas
represent the corresponding standard deviations. Bottom graph: Distribution of the
size of the metaorders, showing a maximum between 0.1% and 1% of the daily volume.

Results are averaged over the top 24 most liquid TSE stocks.

A metaorder ω is usually characterized by few metrics: Q(ω) is the total metaorder
size in shares and N(ω) the total number of child orders, i.e. the number of
consecutive market orders of the same sign from the same trader. T (ω) is the
total duration of the execution, qi(ω) is the size (in shares) of the ith child orders,
and pi(ω) is the log mid-price just before the time of execution ti(ω).

Natural questions that arise (among many others) are:

• What is the typical volume Q of metaorders compared to the total daily
volume VD?

• How does N and T depend on Q on average?

• What is the average execution schedule, i.e. how does the already executed
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volume
∑

tj≤ti
qj depend on ti − t0?

We show in Fig. 4.1 (bottom graph) the distribution of executed volume fraction
f := Q/VD, which shows a broad maximum in the region f ∈ [0.1%, 1%]. Some
metaorders correspond to 10% of the daily volume but they are relatively rare.
Similarly, very small metaorders of size < 0.01% have a very small probability.
The range f ∈ [0.1%, 10%] for metaorders is typical of firms like, e.g., AQR or
CFM [14, 80].

The average time between child orders ∆t and the average number of child orders
are plotted in Fig. 4.1 (top graph) as a function of f = Q/VD, where VD is the
executed volume during the day in shares.. We also show as a shaded region the
standard deviation of these quantities. One sees that the average time between
child orders mildly increases as a function of f , ranging from 25 secs. for f = 0.01%
to 150 secs. for f = 1%, before saturating or even slightly decreasing for larger
values of f . Hence the average execution time T increases slightly faster than Q
itself, except perhaps for the largest metaorders.

The increase of ∆t when Q increases is related to the fact that child orders are
more and more aggressive in order to complete execution, so traders wisely wait
longer before sending the next one, lest they are detected by market makers. This
however becomes difficult for large fs, because traders are also attempting to
execute their metaorders as quickly as possible. Note that translated into total
execution time T , these results show that for f = 0.01%, the typical value of T
is ≈ 200 seconds, whereas for large metaorders with f = 10%, T ≈ 90 minutes.
These numbers are however only indicative and the total duration of execution
can rise to a full day.

The typical number N of child orders is around 10 for f ≲ 1% before increasing
steeply for larger f . This reflects the fact that the available volume at the best
quotes is relatively small and if traders want to avoid “eating into the book”, then
the size q of child orders is also limited, which mechanically pushes the number
of child orders up when Q increases. Note that typically the volume available at
the best quote is around 10−4VD for the most liquid stocks.
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Figure 4.2: Mean fraction of executed volume of metaorders as a function of the
rescaled execution time (ti − t1)/T . Slight shifts on the x-axis come from binning effects.

Results from all metaorders in our dataset.

Let us finally turn to the average execution schedule. We plot in Fig. A.2 the
average executed fraction

∑
tj≤ti

qj/Q as a function of the rescaled time since the
start of execution (t − t1)/T . One sees a nicely linear average execution profile,
suggesting that metaorders are typically executed using a constant trading rate,
except possibly at the beginning and at the end of the execution where trades are
more aggressive – although this effect might be dominated by metaorders with a
small number of child orders.

4.2.3 Time scales & Market ecology

One of the aspects that makes financial markets particularly complex is the wide
range of time scales over which traders operate. Indeed, time horizons range from
years or decades for institutional investors (pension funds, mutual funds etc) to
sub-seconds for market makers.

These time scales are relevant to understand order flow and liquidity dynamics,
and therefore price impact. Indeed, whereas market makers allow orderly trading
by acting as intermediaries between final buyers and final sellers, their inventory
constraint prevent them from offering “resistance” to large buy or sell metaorders.
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Only slow liquidity can counter-act persistent order imbalance [76].

In this Section, we leverage the identification of traders to classify them into four
different classes. We denote by It the inventory of a given trader at time t, and
by ϵt = ±1 the sign (buy/sell) of the orders they submit at time t. We define the
reversal time τ as the average time between two consecutive orders with different
signs from the same trader:

• Long Term traders: These traders have long term trading horizon, and typ-
ically execute large metaorders. Orders submitted generally have the same
sign as their inventories : It · εt > 0 and the reversal time τ is typically
longer than a trading session.

• Short Term traders: They can trade high frequency signals that flip sign
during a trading session. To exploit their signals, they must however build
significant positions It. Hence we expect them to trade in the same direction
for a while, but with a reversal time shorter than a trading session, typically
around 30 minutes. In this Chapter, a "fast" trader is broadly defined such
that their τ is smaller than the session time as the broadest definition. Oth-
erwise the trader is regarded as a "slow" trader.

• Market Markers: They provide liquidity to the order book, earning the
spread but possibly suffering from price impact. In a way, these participants
are the easiest to identify: they are responsible for a large part of trading
activity while keeping their inventories It close to zero. Their reversal time
is typically under the minute.

• Brokers: They are executing orders on behalf of their clients, so they are
trading at high frequency and their inventories can vary greatly across ses-
sions or stocks. It is difficult to assert with certainty that a trader is a broker,
as they may resemble the other three categories in a given session.

Using the reversal time τ as a criterion to separate “fast” and “slow” traders, we
compute the contribution of the two categories to the trading activity using either
the fraction of the market order volume executed by fast traders, Vfast/VD or the
relative fraction of the number of fast traders, Nfast/ND. Nfast is the number of
“fast” traders in a given session, whereas ND is the total number of traders having
traded at least once during the session. We show in Fig. 4.3 the histogram of
these ratios, computed over all sessions and all stocks of our database. Whereas
the most probable value of Nfast/ND is around 8%, the most probable value of
the ratio Vfast/VD is between 50% and 60%. Therefore, the contribution of “slow”
market orders to total volume is roughly one-half. This finding is in line with
[82]. One can also determine the fraction of market orders executed against fast
traders, which is found to be in the range 60% to 70%.
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(a) Vfast/VD per session for 100 stocks over 10
years

(b) Nfast/ND per session for 100 stocks over 10
years

Figure 4.3: Histogram of the participation of fast traders to the global trading activity.
Vfast is the volume executed by fast trades during a session. VD is the volume of market
orders during a session. Nfast is the number of fast traders and ND is the total number
of traders participating to a given session. We used each session for each stock in our

database (around 40,000 sessions).

The conclusion of this study is that while fast traders are dominant in terms of
volume, the contribution of slow volumes to trading activity actually of the same
order of magnitude. This finding is important since the standard interpretation
of the square-root impact law in terms of latent liquidity [74, 76] assumes that
slow volumes are a factor ∼ 300 times smaller than VD [79], which is certainly
not the case here. In the next Section, we will revisit the empirical evidence for
square-root impact and propose a new interpretation of the LLOB model.

4.3 Square-root impact: micro-scales & meso-scales
As recalled in the introduction, there is overwhelming empirical evidence for the
square-root impact law for metaorders, which has again been confirmed in great
detail in [72] for the TSE, using the very same dataset as here. More precisely,
the square-root impact law states that

I(Q) := E[∆p · ϵ | Q] = Y σD

√
Q

VD
(4.1)

where ϵ is the sign of the metaorder of total size Q, ∆p is the log mid-price change
between just before the first and just after last child order and σD and VD are the
contemporaneous daily volatility and exchanged volume. Note again that I(Q) is
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independent of the execution time T (see for example [70] and Fig. 4.6 below). In
the rest of the Chapter, we will use (phigh − plow)/popen as a proxy for σD.

In this Section we attempt to dissect the square-root law into more microscopic
components, which sheds further light into its origin and leads to a new interpre-
tation of the Latent Liquidity model.

4.3.1 The “double” square-root impact of child orders

Figure 4.4: Average price profile during the execution of a metaorder. The vertical axis
represents the cumulative impact of child orders, rescaled by the daily volatility and the

square root of the relative volume of the child order q. These profiles are obtained
averaging over the top 8 most liquid stocks of our dataset. We show with red dotted line

the function
(√
i+ i0 −

√
i0
)

and in black a pure power-law fit i0.7. Inset: Average
impact of the first child order E[∆p(1) · ϵ] as a function of its size q rescaled by daily

volume VD, demonstrating the fact that the square-root law is in fact valid at the level
of child orders.

Instead of measuring the impact I of full metaorders, one can measure the partial
impact J (q, i), i.e. the average price difference ∆pi between just before child order
i + 1 and just before child order 1, conditional on the size q of child orders and
the rank i. We find that to a good approximation that impact is proportional to

61



Chapter 4.

both √q and
√
i:

J (q, i) := E[∆pi · ϵ|q, i] ∝ σD
√

q

VD

(√
i+ i0 −

√
i0

)
(4.2)

with i0 ≈ 4, see Fig. 4.4. We show in the inset that the √q dependence on
the volume of child orders holds very well for i = 1, but we have checked such a
dependence for other values of i as well. This demonstrates that the square-root
law already holds at the level of child orders, provided one waits long enough after
the execution, see below. Eq. (4.2) is the central result of this Chapter.

Several remarks are in order:

• The fit is very good up to i = 50, beyond which another regime appears to set
in, where impact saturates. This however only concerns a small fraction of
large metaorders, for which conditioning effects should be taken into account
(e.g. large prevailing liquidity at the opposite best, see [37]). An alternative
interpretation is that such large metaorders are detected by the market,
triggering the influx of opposing limit orders. Impact saturation for large Q
has been reported elsewhere as well, see e.g. [78, 79].

• When fitting with a more general power-law (i+i0)
1−β−(i0)1−β , the optimal

value of β is found to be 0.48, i.e. very close to a square-root.16 Alternatively,
imposing i0 = 0 yields 1−β = 0.7, but the fit is clearly worse for small times,
see Fig. 4.4.

• When i ≫ i0, one finds that the temporal profile of the impacted price
behaves as

√
i, a result already reported in [69, 78, 83].

• When i = N and using Q = qN one finds

I(Q) ∝ σD
√

Q

VD

(√
1 + i0/N −

√
i0/N

)
, (4.3)

allowing one to recover exactly the square-root impact law, Eq. (4.1), up
to a weakly varying N -dependent factor that increases from 0.31 to 1 as N
goes from 2 to ∞ (when i0 = 4).

4.3.2 A non-linear propagator model

The above results can be summarized within the framework of a non-linear prop-
agator model [7, 31], where the impact of child order j measured at time ti > tj

16The exponent β is defined as the decay exponent of the propagator, as |ti− tj |−β , see [7, 31].
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is proportional to
√
qj/(ti − tj + s0), as predicted both by the LLOB model [74]

and by the Bayesian theory of Ref. [30]. Indeed, from such an expression one gets:

J (q, i) ∝ √q
∑
tj≤ti

√
∆t

√
ti − tj + s0

≈ 2
√
q
(√
i+ i0 −

√
i0
)
, s0 ≡ i0∆t, (4.4)

where we have assumed for simplicity that qj = q, ∀j and tj ≈ j∆t+t0, with ∆t the
time between two consecutive child orders. We have furthermore approximated
the discrete sum over j by an integral over tj .

Such an interpretation however appears to violate the “diffusivity” condition de-
rived in [31, 84], which relates the decay of the propagator with the decay of
the autocorrelation of the sign of the trades. Superficially, a propagator decay in
(ti−tj)−1/2 should lead to strongly mean reverting prices, at odds with the diffusive
nature of prices. A way out of this conundrum will be presented in a forthcoming
paper [85]. Note that the above non-linear propagator model precisely saturates
the no-arbitrage bound derived by Gatheral in [86].

The most striking result of the previous Section is that the square-root law ap-
pears to hold already at the level of child orders. This is not in line with the
standard “mesoscopic” interpretation of the Latent Liquidity model [74], which,
as we alluded to before, would require the fraction of slow volume to be much
smaller than what we reported in Section 4.2.3.

We are thus led to the conclusion that the latent liquidity idea must in fact operate
already at the micro level. Whereas the revealed order book contains primarily
limit orders posted by market makers, the final sellers’ or buyers’ price would be
distributed according to a locally linear profile, as predicted by the LLOB theory
[74] – which, as a reminder, only relies on minimal assumptions, in particular on
the diffusive nature of prices.

So the scenario would be as follows: once the incoming buy (sell) has been executed
against a market-maker, a “hot potato” game starts between market-makers until
the order is finally digested by a final seller (buyer). In order to find such a
final seller (buyer) the price must on average move by an amount δp such that
Γ(δp)2/2 = q, where Γ is the slope of the latent liquidity. Once this is achieved,
the price tends to revert back as 1/

√
t− ti, as predicted by the LLOB model, see

[7, 74], but in disagreement with the predictions of the propagator model [31].
This discrepancy will be discussed further in [85].

If the above interpretation is correct, however, it should hold for arbitrary market
orders. Since all orders are equivalent, they should lead to the same average impact
on prices (as was indeed found in [36]). In other words, one should see a √q impact
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for single market orders provided one waits long enough for the “hot potato” game
to be completed. This is what we test in the next Section, which then opens up the
question of reconstructing synthetic metaorders from a list of consecutive market
orders that do not necessarily belong to the same ID. The anonymity of market
orders suggests that, in certain conditions, the very same square-root impact law
I given by Eq. (4.1) should also hold for synthetic metaorders. This indeed turns
out to be the case, as we discuss now.

4.4 From single market orders to synthetic metaorders

4.4.1 The impact of single public market orders

We want to understand the behavior of the price after a buy (sell) market order.
Clearly, if the volume of the market order is less than the prevailing volume at the
opposite best, the immediate impact is zero. However, as time goes by, one very
quickly sees that impact grows and becomes approximately given by √q, whether
or not immediate impact is zero (the full temporal aspects will be explored in
more details in [85]).

More precisely, we show in Fig. 4.5 the impact of a single market order as a
function of q for two typical stocks of the TSE, after waiting for a volume time
equal to q itself – i.e. after the market has traded the same quantity as the initial
market order. We see that independently of whether or not the initial market order
has an immediate impact, the overall behaviour is compatible with an impact
growing as √q. To remove intraday seasonality effects, we first determine the
average intraday profile of volatility σb and executed volume Vb, using yearly data,
computed on each 15 minutes bins. Then, we rescale impact and volume of market
orders by, respectively, σb and Vb corresponding to the 15-minute bins of the day
to which these orders belong.

For some stocks, a plateau regime however appears for very small q, perhaps
related to tick size effects (see Fig. 4.5; right graph).
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Figure 4.5: Impact of public market orders measured after a volume time equal to the
size q of the market order itself. σb and Vb are the average volatility of volume of the 15
minute bin to which the order belongs. The blue points represents the average impact of
all trades, while the orange points represents trades that have no immediate impact, i.e.
such that q is smaller than the prevailing volume at the opposite best. In this way, we

can see that the impact indeed builds up over time. Left and right graphs correspond to
two typical stocks, one showing a nearly perfect √q behaviour for all q (see dashed black

line). Note that the right graph exhibits a plateau for very small q’s.

4.4.2 Synthetic metaorders

Since arbitrary market orders seem to all behave similarly, independently of the
metaorder they belong to, we made the following numerical experiment that con-
firms the non-linear propagator interpretation of Eq. (4.2) for metaorders. We
construct a new dataset of synthetic metaorders, by randomly shuffling traders ID
and distributing them to market orders while we keep the historical market order
flow, i.e. by randomly reordering real traders’ IDs 17. This preserves the initial
frequency distribution of traders: i.e. some of them appear many times whereas
others are trading less frequently.

We then use the same method as in 4.2.1 to define metaorders as a consecutive
sequence of trades of the same sign associated to the same new trader ID (that has
been reshuffled). We obtain synthetic metaorders, that start and end at different
times as the original (true) metaorders. Hence, any information associated with
these metaorders is at least partially lost. Still, as shown in Fig. 4.6, we recover
exactly the same square-root impact function as for the original metaorders! Note
in passing that these graphs show once again that the square-root impact law

17The shuffling was based on the Fisher-Yates algorithm. In other words, we collect all the
market orders within the same session for a specific stock and simply shuffle only trader IDs.
Specifically, we apply the function numpy.random.shuffle in Python to the DataFrame column
containing the trader IDs
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only depends on the volume Q of the metaorder (either real or synthetic) but not
of the execution time T , see [7, 45, 70]. We have tested different constructions
of synthetic metaorders on different stocks, from the Paris and London Stock
Exchange, with similar results – a more detailed discussion will be presented in
[85]. Note that the preservation of the impact law under reshuffling provides
further evidence that short-term impact should be decoupled from alpha (i.e.,
predictive signals). This is consistent with the fact that the typical time horizon
over which traders seek alpha is significantly longer than the execution timescale
of metaorders. This is particularly true in this study, as metaorders are defined
within trading periods. Similar observations have been made, for instance with
CFM’s trades—where the square-root law remains valid—or in the ANcerno
dataset, see [38, 40, 44]

Figure 4.6: Left: Impact I(Q) of real metaorders as a function of their rescaled size
Q/VD for a typical Japanese Stock, using data from 2012 to 2018. The color of the dots

correspond to different total execution time T , expressed in seconds. Right: Impact
I(Q) of synthetic metaorders for the same stock, obtained via ID reshuffling. ID

shuffling consists in a random permutation of historical trader IDs, preserving the
frequency of apparition. Note that the vertical and horizontal scales are the same in the

two plots: the square-root fit is exactly the same as for real metaorders. From the
legend, one can also clearly see that I(Q) is independent of T [70].

However, it is worth noting that synthetic metaorders are generally smaller in
size compared to real ones.

4.4.3 Discussion

The results of the previous two sub-sections strongly suggest a purely “mechani-
cal” interpretation of the square-root impact law, based on a time decaying

√
q/t

impact of single market orders, independently of their association with a spe-
cific metaorder (since trader ID’s can be scrambled without affecting the results).
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These findings are difficult to reconcile with theories explaining the square-root
law based on information, such as in [71], or on the detection by the market of
the beginning of new metaorders, such as in [30, 43].

Those results are, on the other hand, perfectly in line with the fact that, due to
anonymity, all market orders – even uninformed ones – should play an equivalent
role and should on average impact prices similarly [87]. This was already noted
in [36] by comparing the impact of CFM market orders with non-CFM market
orders, and even more convincingly in an unpublished specifically designed 2010
experimental campaign with totally random market orders.

4.5 The other side of market orders: liquidity providers

4.5.1 Refill sequences

Whereas the long-term correlation of market orders is well documented [18, 31,
88] and mainly attributed to the order splitting of large metaorders [16, 18], our
dataset also allows us to study the splitting strategy of liquidity providers.

To do so, we simplify the problem by restricting to the set of filled limit orders, i.e.
limit orders that have been placed in the order book and subsequently executed
by another participant. Thus, as for liquidity takers, one can aggregate those
filled limit orders into “refill sequences”, i.e. sequences of consecutive filled limit
orders of same sign submitted by the same trader during a trading session. Given
the splitting behavior of liquidity takers, market makers/liquidity providers face
a sign-correlated succession of market orders. It is thus likely that the executed
limit orders flow will be also be persistent, and lead to a power-law tail in the size
distribution of the refill sequences, as we indeed confirm empirically, see Fig. 4.7.
We show there a power-law fit of the distribution of the number n of child orders
associated with refill sequences, as ψ(n) ∝ n−µp with µp in the range [1.4, 2.4]
depending on the considered stock. This power-law decay echoes the Lillo-Mike-
Farmer distribution of child market orders, although it is not expected to mirror
it exactly since different traders provide liquidity to the same incoming metaorder
– see [89] for a related discussion.

It should however be emphasized at this point that the boundary between liquidity
provider and liquidity taker is somewhat blurred. Except for specific cases, the
large majority of market participants use a mix of limit and market orders to
acquire or sell shares. For example, it is quite common to see participants adding
liquidity at the bid (ask) while sending market orders at the ask (bid). Large
funds like AQR declare that most of their executed volume is though limit orders
[14].
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Figure 4.7: Distribution of the length n of refill sequences for a given stock of the TSE.
A power-law distribution fits the data very well: ψ(n) ∼ n−µp . Inset: Distribution of µp

across the different stocks of our dataset, regressed independently.

4.5.2 Strategic behaviour of liquidity providers

As liquidity providers get executed on the ask (bid) side, they tend to increase
(decrease) their next limit order such as to (i) control their inventory as the next
trade will be biased towards the bid (ask), (ii) protect themselves against being
picked up by making the next trade less favorable for the buyer (seller). This is
often called “skewing” in the market making jargon, and/or (iii) ask for a better
price in the case demand for liquidity is persistent.

Hence we expect the next limit order to be executed at a higher (lower) price, i.e.

K(i) := E

[
ϵ · pi+1 − pi

σD
| i
]
> 0,

where ϵ is the sign of the executed market order, and pi is the log-price at which
the ith child of a refill sequence is filled. We find that the “refill function” K(i)
depends only weakly of the volume of the filled limit order, probably due to
strategic liquidity provision.
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Figure 4.8: Coefficient of the refill function Eq. (4.5) when regressed separately. We
used refill sequences from the top 4 most liquid stocks of our dataset, selecting the top
100 more active traders. Each dot is obtained by averaging two close-by data points, so

that no individual data can be inferred from this graph.

We have found that the K(i) however depends on the liquidity provider ℓ, some
being more aggressive than others. More precisely, we fitted Kℓ(i) as:

Kℓ(i) =
Cℓ

iκℓ
, (4.5)

where p is the label of the liquidity provider. The inverse dependence on i means
that, as the number of previous executions increases, liquidity providers are more
willing to post competitive quotes. One can observe two main types of traders,
see Fig. 4.8:

• High Cℓ ≳ 0.02 traders are “wary” and place their next limit order quite a
bit deeper in the book. The corresponding values of κℓ cluster around 1/2.

• Low Cℓ ≲ 0.02 traders, on the other hand, correspond to “aggressive” liquid-
ity providers who compete for the spread. Corresponding values of κℓ are
also larger, meaning that even after being executed many times, they are
still providing competitive quotes.

Low Cℓ market makers are thus responsible for ensuring stable liquidity. Figure
4.9 confirms that low Cℓ traders account for the largest fraction of consumed
liquidity. Note that Cℓ = 0.02 corresponds to a price degradation of 2% of the
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daily volatility σD after the first executed limit order, and of 0.2% after the 10th
execution when κℓ = 1.

Figure 4.9: Plot of the fraction of liquidity provided by trader p as a function of
parameter Cℓ. As expected, traders responsible for most of liquidity have a low Cℓ. We
used refill sequences from the top 4 most liquid stocks of our dataset, selecting the top

100 more active liquidity providers. Each dot is obtained by averaging two close-by data
points, so that no individual data can be inferred from this graph.

Interestingly, the fact that Eq. (4.5) decreases with i suggests that the available
liquidity increases away from the best price, which is the fundamental ingredient
leading to a concave impact function.

4.6 Conclusion

The JPX database provides a trove of interesting features, which have only started
to be exploited by Sato and Kanazawa to understand the origin of the long memory
of market order signs [16] and, more recently, to firmly establish the square-root
law of market impact, Eq. (4.1) and rule out some of the proposed theories that
predict a non-universal value for the concavity exponent δ [72].

Our aim in this study was to leverage the fact that all metaorders can be iden-
tified to shed light on the microscopic origin of the square-root law. Our central
result, which we did not expect when starting this project, is that such a law has
in fact microscopic roots, and applies already at the level of single child orders,
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provided one waits long enough for the market to “digest” these orders. This is
not consistent with the standard interpretation of the LLOB model [74], which
assumed that the theory described the liquidity dynamics at a “mesoscopic” scale.
The mesoscopic impact of metaorders rather arises from a “double” square-root
effect at the level of child orders, see Eq. (4.2): square-root in volume of individual
impact, followed by an inverse square root decay as a function of child order time,
such that the cumulative impact of a metaorder yields back the partial (Eq. (4.4))
and total (Eq. (4.3)) square-root laws.

This finding however immediately suggests that since market orders are anony-
mous, the double square-root law Eq. (4.2) should apply to any market orders
and the impact of synthetic metaorders, reconstructed by scrambling the identity
of the issuers, should also be described by the square-root impact law, Eq. (4.1).
We have provided empirical evidence that this both statements are indeed valid.
In particular, synthetic metaorders behave exactly as real metaorders, see Fig.
4.6. We conclude that there is nothing special about child orders belonging to a
given metaorder, at odds with theories that emphasize the information content of
such trades to explain the square-root impact law, but in agreement with previous
conjectures about the purely mechanical aspect of price impact [36, 87, 90].

Interestingly, our synthetic metaorder experiment suggests that it may be possible
to reconstruct the impact of metaorders from the public tape only, without trader
IDs. In the next chapter, we show that this is indeed the case, provided market
orders are properly aggregated into synthetic metaorders, opening the path to a
new wave of empirical studies, in particular concerning cross-impact [91, 92].

While our results show that the square-root impact law does not emerge at the
meso-scale but is already present at the micro-scale, they trigger new unanswered
questions. In particular, why is the impact of single market orders of volume q
also a square-root? We have argued that this is because the latent order book is
locally linear, such that after a “hot potato” game between liquidity providers, the
final counterparty of the initial market order is on average at a distance √q from
the initial mid-point. Although this scenario is intuitively plausible, we believe
that a deeper dive into the JPX database (or a similar one) would allow one to
(in-)validate such a picture. Another conundrum is the square-root time decay of
individual market orders, which seems to violate the martingale constraint that
relates the decay of the autocorrelation of the sign of market orders to impact
decay [31, 84]. We will come back on this in Chapter 6.
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Data Availability Statement

The data supporting our results were provided by Japan Exchange (JPX) Group,
Inc. JPX Group is a third-party commercial company and provided their dataset
through a non-disclosure agreement with Kyoto University, strictly for academic
purposes. This non-disclosure agreement imposes legal restrictions on data avail-
ability, and therefore, we cannot make the data publicly accessible without ap-
proval from JPX Group.

Take Home Message

• The square-root law of market impact, long considered a mesoscopic
phenomenon, already holds at the microscopic level of individual child
orders.

• Impact follows a “double” square-root structure: a square-root depen-
dence on volume per child order, combined with an inverse square-root
decay over time.

• The order flow can be viewed as a succession of metaorders (as defined
here), each of them following the SQL.

• The robustness of the square-root law under issuer reshuffling suggests
that short-term impact is largely decoupled from alpha.

• Liquidity providers also seem to submit “provider” metaorders to the
market, whose sizes are likewise power-law distributed.

• These results open the door to reconstructing metaorder impact from
public data alone, with promising implications for cross-impact anal-
ysis.
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Metaorder Proxy: Examining
the Puzzling Efficiency of
Synthetic Metaorder
Reconstruction

We have to remember that what we observe is not nature herself,
but nature exposed to our method of questioning.

Werner Heiseinberg

This chapter builds directly on the previous one, where we demonstrated that
reshuffling the identities of market order issuers preserves the Square Root Law.
Motivated by this insight, we now tackle the problem of reconstructing realistic
metaorders from public trade data and present our novel algorithm. This ap-
proach addresses the challenges arising from reliance on proprietary datasets in
price impact research. We describe how the algorithm successfully recovers key
stylized facts, including the Square Root Law, concave execution profiles, and
post-execution decay. Finally, we discuss our findings, which suggest that average
realized short-term—and even long-term—price impact is primarily mechanical
rather than driven by information revelation, potentially explaining the universal-
ity of the SQL.
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5.1 Introduction

Although we have already introduced the Square-Root Law (SQL) several times,
let us briefly recall its key features, mostly discovered using proprietary datasets.

1. the SQL is in a first approximation independent of the time T needed to
execute the metaorder, and only depends on the volatility of the asset and
the fraction of the total traded volume captured by Q [7, 49];

2. the SQL also holds “inside” each metaorder: the average price profile is itself
a square-root as a function of the currently executed volume. This means
that the last child orders impact less than the first ones [2, 39, 69];

3. the square-root impact decays post-execution over the time scale T of the
metaorder itself [39, 43, 44, 83, 93], with a sharp decay at first and a very
slow decay at long times – with perhaps a small but non-zero permanent
component [44, 53].

These empirical results are of primary importance for both academics and practi-
tioners. The SQL indeed predicts that impact costs are extremely high even for
small volumes Q, because of the infinite slope of the square-root function at the
origin. Neglecting such costs can easily turn a profitable strategy on paper into a
money losing machine once implemented, see e.g. [50]. From an academic point
of view, the explanation of such a square-root dependence is far from trivial – is
it due to information revelation, as many standard economic theories postulate
[30, 43, 71, 75, 94, 95], or mostly “mechanical”, as postulated by “latent liquidity”
theories [38, 53, 62, 74, 90], see also [7].
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Despite its significance, empirical research on market impact, specifically when
it comes to “metaorders”, often faces limitations due to data access constraints.
Indeed, to track the impact of those metaorders, one should access proprietary
datasets, typically held by private institutions, limiting the scope and reproducibil-
ity of academic research. Furthermore, such proprietary datasets are often not very
large and possibly biased by the trading style of the managers: as emphasized in
[7, 49] market impact and short term trading signals can be difficult to disentangle
– in fact, mainstream economists would claim that “impact” is nothing but the
correlation between the sign of informed trades and the subsequent price change
[87].

Very recently, Sato and Kanazawa [42] have been able to access the records of all
trades of the Tokyo Stock Exchange (TSE), with (anonymized) trader labels that
allowed them to reconstruct all metaorders unambiguously. Their analysis allowed
them to confirm once again the validity of the SQL with great precision, and to
establish that such a law holds for all stocks individually, when some theories
based on the volume distribution or on the autocorrelation of the sign of trades
would have predicted systematic deviations from a square-root law [43, 71]. The
same dataset has also been used to unveil further, more subtle properties of the
SQL [2].

Such a unique dataset is however, quite unfortunately, inaccessible for open aca-
demic research. There have thus been many attempts to create proxies of metaorder
impact using the public tape, i.e. the list of all buy and sell market orders exe-
cuted on lit markets, but without any tags allowing one to track individual traders.
To the best of our knowledge, these attempts have been unsuccessful. Identifying
metaorder impact with the correlation between order imbalance in a time interval
T is clearly completely wrong – impact is linear for small imbalance and satu-
rates for large imbalance [37]. It is all but impossible to accurately identify real
metaorders within the order flow [96]. It is also extremely difficult to generate
data that recreate all the stylized facts mentioned above using VAR models – see
Chapter 8 – or propagator models calibrated on real data, see e.g. [1, 21]. In
recent years, machine learning has become a widely used tool for generating limit
order book and understand impact, see [97, 98]. Nevertheless, all models still
struggle to fully capture the characteristics of metaorder execution [99].

To address such challenges, we propose in this Chapter an algorithm that uses
public trade data to generate synthetic, metaorders which lead to price impact
indistinguishable from that observed using proprietary datasets. Our method not
only circumvents the need for proprietary data but also facilitates the creation of
larger and more robust datasets. By adequately aggregating public trade data, we
demonstrate that the resulting synthetic metaorders preserve all major character-
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istics found for real metaorders (SQL, concave execution profiles, post-execution
decay), thus providing a valuable tool for both academics and practitioners.

This chapter is mostly algorithmic and empirical in nature, as we explain our
procedure in a clear and reproducible way, and present a sample of the results we
have obtained that fully validate our proposal. The theoretical justification for
the success of our procedure is not yet completely understood and we will propose
a modelling framework in the next Chapter. But we believe that the fundamental
idea is the following: since the SQL is measured for all metaorders, independently
of the trading firm, and since market orders executed in markets mostly originate
from such metaorders and are anonymous, the emergence of the SQL cannot
heavily rely on the precise matching between market orders and metaorders. This
is indeed what was observed in our previous paper [2] using the detailed TSE data
as a validation, and that we generalize in the present Chapter, which is structured
as follows:

• Section 5.2 provides a detailed explanation of our synthetic metaorder gen-
eration algorithm, with an emphasis on the significance of what we call the
“mapping” function.

• Section 5.3 presents several evidences of the method’s effectiveness in repli-
cating and validating the well-documented empirical facts about metaorders.

5.2 The algorithm

In this section, we present our algorithm designed to generate random metaorders
from publicly available data, which lead to impact properties indistinguishable
from actual proprietary data. We define a metaorder as a sequence of trades
of the same sign initiated by a given trader within the same trading session. In
order to generate synthetic metaorders, we propose the following algorithm, which
requires only public trade data for any asset class (stock, futurs, options etc...).
Although using aggregated order book data across multiple venues yields similar
results, we recommend using data from a single exchange (ex : Euronext, Nasdaq,
CME etc...).
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Algorithm 1 Generating Synthetic Metaorders
Input: Trade data for a given stock and date

Output: Metaorder statistics
1. Load and clean trade data for given stock and date (e.g., remove opening

and closing periods).
2. Compute daily traded volume VD and intraday volatility σD, defined as:

VD =
∑
i

qi, σD =
max(pt)−min(pt)

p0
(5.1)

3. Randomly assign trades to traders using a mapping function while preserving
the chronological order of trades.

4. Sort trades by traders and timestamp.
5. Define a metaorder as a sequence of trades of the same sign from the same

trader.
6. Compute metaorder features:

• Log price at metaorder start and end.
• Number of child orders in the metaorder.
• Volume traded within the metaorder.
• Any other relevant quantities.

7. Aggregate metaorder statistics and return only those with more than one
child order.

The mapping function

The important feature of the algorithm is the mapping function, which assigns
synthetic trader IDs to each market order executed on a particular day. This
function is crucial: if one possesses a proprietary dataset [38] or an exhaustive one
such as the TSE dataset [42], one knows this mapping exactly at least for a given
set of market orders, and this allows one to measure the SQL in the usual manner,
namely (see [7])

I(Q)

σD
= Y

√
Q

VD
, with

{
I(Q) = E[ε · (pe − ps)]
Y ∈ [0.5, 1],

(5.2)

where ps is the start mid price, just before the execution of the first child order
and pe is the end mid price, just before the execution of the market order imme-
diately following the last child order. Now, as highlighted in [2], the introduction
of random variations in the matching between real traders and orders, the square
impact law is preserved, including its prefactor Y . Here, we show that even for a
mapping function totally agnostic of the true mapping, we still recover the correct
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impact.

We gave this mapping function only two degrees of freedom: the number of differ-
ent traders in a given day and the distribution of their trading frequency, that is,
the fraction of orders they participate to. We will show later that the impact law
is only weakly dependent on those parameters, as expected. However, these pa-
rameters directly influence both the number and average length of the generated
random metaorders. Therefore, considering the stock’s liquidity (i.e. the num-
ber of trades per day and the average volume per trades), it may be necessary to
set these parameters within an appropriate range to generate coherent metaorders.

Below is the pseudo-code for the mapping function. It is important to empha-
size that this is merely a mapping function—quite simple in this case. While it
performs well on the selected assets (and others tested), further fine-tuning may
be necessary depending on the specific microstructural characteristics of the asset
under study. A different, and potentially more natural mapping function that also
yields satisfactory results will be presented in Chapter 7.

Algorithm 2 Mapping Function
Initialization: Let N be the number of traders, and F a probability law.

1. Generate fi ∼ F for i = 1, . . . , N .
2. Define pi = fi∑

fi
for each trader.

3. Compute cumulative probabilities:

ci =

i∑
j=1

pj , c0 = 0.

4. For each order in the market:
(a) Draw a random variable U ∼ U(0, 1).
(b) Find the trader i such that ci−1 ≤ U < ci.
(c) Assign the order to agent i.

We have evaluated the robustness of our algorithm using different values of N and
two types of trader frequency f distributions: a power-law P (f) ∝ f−α and a
homogeneous f ≡ f0. In real markets, the distribution of trader participation is
well approximated by a power-law distribution, where a small number of traders
account for a significant portion of executed orders, while most traders participate
less frequently, see [2].
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Note that a key aspect of this mapping function is that it corresponds to sampling
without replacement. We find this feature essential for recovering the SQL.

All source code used in this Chapter is publicly available at :https://github.
com/glatouille/Metaorder_proxy

Now the procedure is established, we focus next on empirical results and demon-
strate the robustness of our method with which we can generate an unlimited
number of realistic metaorders.

5.3 Recovering metaorder stylized facts

In this section we report the results of our empirical investigations using synthetic
metaorders. A series of sanity checks have been performed to rule out any trivial
artifacts (see Appendix). For example we check that by randomly flipping the
sign of market orders we measure zero impact, as it should be – impact is not
merely related to volatility [70].

5.3.1 Peak impact: the Square Root Law

We first tested our algorithm on a very liquid asset: the EUROSTOXX futures
contract from September 2016 to August 2018. We used public trade data, select-
ing only the Eurex exchange. We obtain a remarkably clean square root law over
four decades, see Figure 5.1, with a noisy region for very small Q/VD ≤ 5× 10−6,
which might possibly be considered as a linear, as in [100]. Note that we do
not only recover the square-root dependence on Q but also the correct a realistic
prefactor in Eq. (5.2), with Y = 0.5, as found in [38, 42].
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Figure 5.1: Retrieving the Square Root Law for futures on the EUROSTOXX, trade
data from 2016 to 2018. We used a mapping function with 4 trades (resp. 40 trades) for
the blue curve (resp. orange), and homogeneous distribution of their trading frequencies,

resulting in approximately 3 million metaorders in both cases. We see that, by
fine-tuning the number of traders, one may recover the correct prefactor Y ≈ 0.5

We also tested these results on single stocks by selecting a basket of seven stocks
traded on the Paris Stock Exchange, between January 2021 and December 2023.
We used our algorithm to generate approximately 3 millions of random metaorders
per stock, imposing 20 traders and a homogeneous trading frequency distribution.
Once again, we obtained very precise results, with almost no variation in the
prefactor (Y ≈ 0.5), see Figure 5.2. This could be explained by the fact that
selected stocks are among the most liquid ones traded on the PSE, and thus may be
quite similar. We also tested for a specific stock (BNP Paribas) the dependence of
the SQL on the input parameters, i.e. the number of traders and the distribution
of their trading frequencies. Again, we found no significant variations in the
impact function. However, we do acknowledge that for some assets, particularly
illiquid ones, one may have to fine-tune those parameters to recover the SQL. It is
necessary to be statistically close enough to the real mapping function. The same
remark also applies to the Y-ratio. While we mostly show impact functions with
a realistic prefactor, i.e., close to 0.5, we have also encountered stocks where the
prefactor was slightly higher of lower, but typically of order one, see Figure 5.1.
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Figure 5.2: Left: Retrieving the Square Root Law for various stocks traded on the
Paris Stock Exchange. Synthetic metaorders were generated using our algorithm,

specifying 20 traders and a homogeneous distribution of their trading frequency. Stocks
were traded on Euronext between 2021 and 2023. Right: Verifying the robustness of

the algorithm in respect to variations in the mapping function parameters. Legend
represents (Stock Name; Type of Distribution; Number of traders; Power law exponent).

Data from Paris Stock Exchange, between 2021 and 2023.

5.3.2 Role of metaorder duration

One of the major enigmas of metaorder price impact is that, contrary to a priori
expectations, the impact remains independent of the metaorder duration T . This
phenomenon is a natural consequence of the SQL as written in Eq. (5.2): indeed
as T is varied the volatility contribution scales as

√
T whereas the total traded

volume scales as T , which means that the explicit T dependence cancels from
I(Q). This property was extensively studied in [70] and confirmed in [2] both for
real and synthetic metaorders based on the TSE dataset. We show in Fig. A.2
that this property also holds for our synthetic metaorders.
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Figure 5.3: Approximate independence of metaorder impact I(Q) with respect to the
metaorder duration T (expressed in minutes). The blue dots represent the impact

divided by the volume contribution as a function of duration, which is approximately
constant for T ≳ 30 seconds, and on average equal to Y = 0.6. The grey histogram

shows the distribution of metaorders durations in minutes. Synthetic metaorders were
generated with BNP Paribas share price between 2020 and 2023, for 20 homogeneous

traders.

Figure 5.3 also reveals that, on average, synthetic metaorders constructed using
our method are shorter than those typically found in proprietary datasets. For
instance, it is not uncommon for firms like CFM to execute metaorders over an
entire trading day. However, the durations of our synthetic metaorders are consis-
tent with the average metaorder duration observed in the TSE dataset, which is
typically also around 2-5 minutes, see [2]. In any case, one can adjust metaorder
duration by tuning the mapping function’s parameters. Furthermore, the other
mapping function detailed in Chapter 7 will generate longer metaorders, more
precisely featuring a power-law distribution of their durations.

5.3.3 Concave profile during metaorder execution
Beyond the peak impact I(Q), our method is also particularly effective in repro-
ducing other stylized facts, such as the concave profile during metaorder execution,
see [39, 69, 83, 93]. Indeed, as proposed in [7], the average price impact during
the execution of the metaorder reads:

I(ϕQ) =
√
ϕI(Q), (5.3)

where ϕ ∈ [0, 1] is the fraction of executed volume, with ϕ = 0 at the start of the
metaorder and ϕ = 1 at the end.
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Figure 5.4: Concave profile during metaorder execution. Random metaorders
constructed on BNP Paribas stock price, data from 2020 to 2023, with mapping function
parameters of 20 traders and a power law distribution for their trading frequencies with

an exponent of α = 2. We selected only metaorders having more than 5 child orders.

Such a concave profile can be explained within the latent liquidity framework,
which predicts that the latent limit order book is locally linear (LLOB) [7, 74].
The fact that this profile also holds for synthetic metaorders is another indication
that, on average, the latent order book is indeed present and provides liquidity for
all metaorders. This could be related to the action of market makers, as proposed
in [2]. That said, the concavity is in fact crucial for market efficiency : it may
be a key element to ensure the diffusivity of prices as argued recently in [101].
However, we believe that the framework developed in that paper is insufficient to
accurately describe reality, as it lacks a crucial component: metaorder decay, to
which we turn next. A unified theory of price impact that incorporate all known
ingredients (autocorrelation of the sign of the trades, square-root impact, impact
decay) is still under construction, a topic on which we hope to report soon [85].

5.3.4 Metaorder decay post execution
Impact decay has been subject to controversy, even when it is of crucial importance
for optimal execution schedules. Indeed, assuming permanent impact or account-
ing for impact decay leads to radically different trading policies. What makes the
empirical study of this problem particularly difficult is the fact that price vari-
ance increases linearly with the time elapsed since the end of execution, leading
to large errors in the determination of impact decay. We know that metaorder
impact during execution is generally small relative to the volatility (see Eq. (5.2)
for small Q/VD), this predicament is especially strong for metaorder decay: the
signal-to-noise ratio significantly worsens when analyzing extended timescales af-
ter execution, highlighting the need for large metaorder datasets.
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An initial line of research suggested that there is a permanent impact after ex-
ecution, at approximately 2/3 of the peak impact, meaning that the price after
execution is equal to the average paid during execution, see [43]. However, a later
empirical study found that upon closer inspection the impact eventually decays to
zero over a much longer timescale (several days). This can potentially be mistaken
for a permanent impact of about 2/3 by the end of the trading day [44]. However,
if the decay of the impact is evaluated over multiple days, a clear decay of impact
is observed – although the long term fate is difficult to ascertain and it is plausible
that a small permanent impact exists [52, 53, 76].

Interestingly, using our synthetic metaorders, we precisely replicate the fit ob-
served in [44] with real data. Assuming a propagator decaying as G(t) ≈ t−β with
β < 1, the rescaled impact after execution for a metaorder of size Q and duration
T can be expressed as:

I(Q, z) = I(Q)
(
z1−β − (z − 1)1−β

)
, (5.4)

with z = t/T ≥ 1 and t = 0 corresponds to the start of the metaorder. Such a
decay is fast at the beginning (with a sharp singularity −(t − T )1−β and a slow
relaxation at long times (as t−β).

Figure 5.5: Price relaxation post metaorder execution, well fitted by the impact
predicted by the propagator model, with the value β ≈ 0.2. We used synthetic

metaorders generated on BNP Paribas share price between 2021 and 2023, using a
mapping function of parameters of 4 traders and power law distribution of exponent

α = 2. We kept only metaorders with more than 5 child orders.

Hence, we confirm using our synthetic metaorder database that impact not only
decays after execution, but rather interestingly it decays exactly as found by Bucci
et al. [44] using real metaorders, with a value of β = 0.2 very close to the one
reported there (β = 0.22). This is also the value predicted by the propagator
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model β = 1−γ
2 [31], where γ describes the power-law decay of the autocorrelation

of trades, which is typically found to be around 0.5 for most stocks, see [102].

It is indeed true that some may be interested in evaluating impact decay over
much longer horizons—typically for asset managers holding positions for several
months. This is a question we intend to explore in the near future.

5.4 Conclusion

In this Chapter, we introduced a straightforward yet surprisingly effective algo-
rithm for generating realistic metaorders from public trade data. This approach
offers a robust solution to a longstanding dataset challenge in price impact re-
search, which has traditionally relied on proprietary data. Using this algorithm,
we were able to recover all the salient stylized facts reported in the existing lit-
erature, specifically: the Square Root Law and its independence with respect to
metaorder duration; the concave profile during metaorder execution; and the slow
power-law decay after execution. We also confirm that this decay is effectively
captured by the prediction of the propagator model, in line with previous studies.
Of course, to generate even more realistic metaorders, some refinements could
be made to this algorithm, particularly when it comes to the mapping function.
However, our goal was to provide a highly reproducible yet effective algorithm in
this area of research, which, by essence, is often not transparent when it comes
to data. We therefore believe this could be a valuable tool for both practitioners
and academics to enhance the quality of their empirical studies.

On the other hand, it also serves as further evidence that there is complete decor-
relation between putative prediction signals (a.k.a. short term alpha) and the
square-root law governing the average realized price impact (at least in the short
term). By construction, a synthetic metaorder has no connection to a trader’s
intention to trade based on a predictive signal. Yet, its impact is indistinguishable
from that of a real metaorder, which, by contrast, may be executed by a trader
who follows such a signal. Hence, this result supports a mechanical origin of price
impact, which may also explain its universal nature. This naturally leads to the
next key question for future research: what are the theoretical foundations under-
lying our findings? Indeed, if price impact is purely mechanical, then one might
expect a theory purely based on order flow dynamics, endogenously in a sense,
could fully capture this phenomenon. Evidence seems to favour the theory of the
latent limit order book [42], although some modifications may be required [2]. Fi-
nally, from an empirical perspective, a natural next step would be to extend this
method to measure cross-impact, which is even more influenced by the scarcity of
datasets than self-impact [50].
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Take Home Message

• We introduce a simple and reproducible algorithm to reconstruct re-
alistic metaorders from public trade data, bypassing the need for pro-
prietary datasets.

• The algorithm successfully reproduces key stylized facts: the Square
Root Law (independent of duration), concave execution profiles, and
post-execution power-law decay.

• The synthetic metaorders have no alpha component, yet their impact
matches that of real metaorders, supporting a mechanical —rather
than informational —origin of price impact.

• Optimizing the mapping function and its parameters may also be nec-
essary to generalize the procedure for any underlying asset—machine
learning could be an ideal tool for this task.

• This mechanical nature may explain the universality of the Square
Root Law and motivates the search for a fully endogenous, order-
flow-based theoretical framework.

• Future research will focus on developing a theoretical framework to
formalize this mechanism and expand the approach to estimate cross-
impact, especially in contexts where public data is limited.

• Although this chapter reflects the chronological thought process in-
spired by Chapter 4, the mapping function and theoretical explana-
tions in Chapter 7 effectively address the identified gaps. Therefore,
revisiting this chapter with insights from Chapter 7 proves to be help-
ful.
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A Unified Framework for
Market Microstructure:
Reconciling the Square Root
Law, Order Flow Dynamics &
Price Dynamics

Extraordinary claims require extraordinary evidence.

Carl Sagan

After empirically reconstructing metaorders and examining the Square Root Law
in the previous chapters, we now develop a theoretical framework aimed at reconcil-
ing several seemingly conflicting observations in market microstructure—namely,
the Square Root Law for metaorders, the diffusive nature of prices, and the linear
aggregated impact of order flow imbalance. Our model builds on a key insight
established earlier: the order flow can be viewed as a superposition of metaorders,
each following the Square Root Law (see Chapter 4).

We then derive theoretical predictions regarding the non-monotonic relationship
between generalized volume imbalances and price changes, which we subsequently
confirm through empirical analysis. Ultimately, we argue that these findings lend
support to the "Order-Driven" theory of excess volatility, suggesting that price
movements are primarily the result of mechanical trading impact rather than
shifts in fundamental value.
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6.1 Introduction

Let us rephrase it here: Price impact refers to the fact that buyers push the price
up and sellers push the price down [7, 87]. The traditional Efficient Market inter-
pretation of this empirical fact is that buyers and sellers are on average informed,
and lo and behold, the price moves according to their prediction [94, 103].

Another, very different interpretation of price impact is that it is a purely sta-
tistical reaction of the market to incoming order flow, where information plays
little role. Prices move just because people trade, whatever the reason they are
trading, and volatility is the result of people randomly buying and selling. This is
the Order-Driven view of markets, explicitly spelled out in [7], chapter 20 – but
see also [87, 104, 105] and in a different setting, [52, 53]. In this scenario, there
is no “information revelation” but rather “self-fulfilling prophecies”, as recently
emphasized in [106].

Of course, reality should lie somewhere between these two extremes. There are
surely some informed trades, and news do impact prices, but there is also over-
whelming evidence for the presence of “noise traders”, excess trading and excess
volatility in financial markets, see e.g. [17, 57, 107–109]. Direct empirical esti-
mates suggest that informed trades are a minority (see [7], chapter 16). While
we are convinced that the Order-Driven view is a much closer approximation to
the dynamics of markets, there are several empirical loose ends that need to be
tied up. A major issue is how to reconcile two prominent stylized facts of market
microstructure, namely, (i) the long-range memory in order signs (i.e. +1 for buy
orders and −1 for sell orders) and (ii) the ubiquitous square-root law of market
impact (that governs the average price move induced by the execution of a se-
quence of orders) with the random walk nature of prices, with a volatility σ that
is directly proportional to the amplitude of the square-root law. More precisely,
the square-root law states that the average price impact I of a metaorder of total
volume Q is given by

I(Q) = Y σ

√
Q

ϕ
, (6.1)

where Y is a O(1) numerical coefficient and ϕ is the average flow of orders executed
in the market per unit time – see e.g. [3, 14, 38, 40, 42, 44, 47, 67–69, 93] and [7,
49] for reviews.

Eq. (6.1) may look familiar, and in fact trivial: superficially, it states that price
changes (i.e. I(Q)) grow as the square-root of execution time T , i.e. the law
of random walks, provided one assumes that T and Q are proportional. But, as
argued in [70], such an argument is completely misleading: not only I(Q) is an
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average price change and not a standard deviation; but also I(Q) is found to de-
pend only on the quantity executed Q and not on execution time T . Furthermore,
it is known that the impact of metaorders decays, on average, after the end of
the execution period (e.g. [44, 80, 83]). Note that all these features are at odds
with the Kyle model, that predicts linear and permanent impact, resulting from
information revelation [75].

We are thus confronted with three interrelated but separate problems:

• (a) What is the basic mechanism that explains the square-root law, Eq. (6.1),
and its surprising universal character?

• (b) Can the volatility of prices σ be explained only in terms of the impact
of intertwined, possibly uninformed metaorders? Or is it impact that is
somehow slaved to some “Fundamental” volatility?

• (c) Can one reconcile the square-root law for metaorders with a linear relation
between average price changes and order flow imbalance?

Although many theories have been proposed to explain the square-root law, there
is no consensus on the issue. The Latent Liquidity Theory proposed in [74] (see
also [7, 90]) seems to capture many features observed in data but seems inconsis-
tent with others, in particular those reported in the Chapter 4 and here the recent
[2]. We will not attempt to dwell further on this particular issue here but accept
it as an incontrovertible empirical fact, still waiting for a fully convincing explana-
tion. We will rather focus on points (b) and (c) above: knowing that the duration
of metaorders is power-law distributed, can one reconcile the square-root impact
law with the volatility of markets and with a locally linear aggregate impact law?

In order to answer these questions quantitatively, we introduce in section 6.2 a
new theoretical framework to describe metaorders with different signs, sizes and
durations, which impact prices as a square-root of volume but with a subsequent
time decay. We show in section 6.4 that, as in the original propagator model, price
diffusion is ensured by the long memory of cross-correlations between metaorders.
In order to account for the effect of strongly fluctuating volumes q of individual
trades, we need to further introduce two q-dependent exponents, which we justify
empirically and allow us to account for the way the moments of generalized volume
imbalance (section 6.3) and the correlation between price changes and generalized
volume imbalance (section 6.5) scales with T . We predict in particular that the
corresponding power-laws depend in a non-monotonic fashion on a parameter a
that allows one to put the same weight on all child orders or overweight large
orders, a behaviour clearly borne out by empirical data (section 6.5). We also
predict that the correlation between price changes and volume imbalances should
display a maximum as a function of a, which again matches observations (section
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6.5). We conclude by arguing that our results support the “Order-Driven” the-
ory of markets, and are at odds with the idea that a “Fundamental” component
accounts for a large share of the volatility of financial markets.

6.2 A continuous time description of order flow

6.2.1 Model set-up

We posit that between t and t+ dt and with probability νdt a new metaorder of
random sign ε(t) = ±1 and duration s(t) is initiated. The volume of child orders is
q (which might itself be random, see below), and during execution the probability
that one of them gets executed is φdt, independently of the size q. We neglect
throughout this Chapter activity fluctuations as well as intraday seasonalities, as
these are not crucial for the effects we want to focus on. This means that µ, φ and
the average duration s̄ are chosen to be time independent.

The total size of the metaorder is thusQ = qφs+O(
√
s). The probability density of

durations s is denoted Ψ(s), which will typically has a power-law tail Ψ(s) ∝ s−1−µ,
such that the distribution of metaorder sizes Q inherits from this power-law, and
decays as Q−1−µ as suggested by empirical data [16, 43].

Such a power-law distribution of metaorder sizes is the basic mechanism proposed
by Lillo, Mike and Farmer (LMF) [18] to explain the long memory of order signs,
which is known to decay with lag τ as τ−γ with 0 < γ < 1 [88]. Within the LMF
model, one has γ = µ− 1, a result recently validated in great details by Sato and
Kanazawa [16] using data from the Tokyo Stock Exchange. In a later stage, we
will allow the exponent µ to depend on q, to account for the fact that large child
orders tend to be less autocorrelated that small ones.

We will also allow the sign of different metaorders to be correlated, as indeed
observed in data [69, 110]. More precisely, we will model the long-term decay of
the autocorrelation of signs, E[ε(t)ε(t+τ)] as a power-law τ−γ× , with an exponent
γ× a priori such that γ× ≥ γ such not to contradict the LMF hypothesis.

We start warming up by computing two simple quantities, the total number of
active metaorders and the average trading volume within a window of duration T .
We will then turn to the distribution of volume imbalance in windows of different
sizes.
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6.2.2 Average number of metaorders
The total number of metaorders NT that are active between t = 0 and t = T is
given by

NT =

ˆ T

−∞
dNt I(t+ s(t) > 0), (6.2)

where dNt = 0 if there is no new metaorder initiated between t and t + dt and
dNt = 1 otherwise. This equation means that to be active in [0, T ], it must start
before t = T and end at least after t = 0.

The average over the probability of initiating metaorders and over their duration
gives

NT = ν

ˆ T

−∞
dt

ˆ ∞

0
dsΨ(s) I(t+ s > 0) = ν(T + s̄), (6.3)

where we assume henceforth that the average size of metaorders is finite, i.e. s̄ :=´∞
0 ds sΨ(s) < +∞, which is tantamount to µ > 1. Hence, for large T ≫ s̄, one

finds NT ≈ νT , as expected.

In the following, we will always make averages over the metaorder initiation pro-
cess, and often replace dNt by νdt whenever possible. When comparing with
empirical data, we will work in trade time NT but still call this quantity T . Trans-
lating our results is real time is, however, non-trivial because, as is well known,
the activity rate ν shows strongly intermittent dynamics (often modeled using
Hawkes processes, see e.g. [7], chapter 9) on top of a U-shaped intraday pattern.

6.2.3 Average trading activity and trading volume
Second warm-up question: what is the total activity AT and total trading volume
VT executed between t = 0 and t = T? In the following we assume that all
child orders have the same size and denote κ := qφν, so that activity and trading
volume are simply related by V T = qAT . More generally, the following results
holds with κ = q̄φν.

There are two terms, corresponding to metaorders initiated within the period [0, T ]
or before t = 0 that are still active in [0, T ]. We denote these two terms as V 1

T

and V 2
T , with

V 1
T =

ˆ T

0
dNt [I(t+ s(t) > T )qφ(T − t) + I(t+ s(t) < T )qφs] , (6.4)

which after averaging over dNt gives

V 1
T = κ

ˆ T

0
dt [I(t+ s(t) > T )(T − t) + I(t+ s(t) < T )s] . (6.5)
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Similarly, for V 2
T we get

V 2
T = κ

ˆ 0

−∞
dt [I(t+ s(t) > T )T + I(0 < t+ s(t) < T )(s(t) + t)] (6.6)

Now let us compute the average over duration s, given by

V
1
T = κ

ˆ T

0
dt

ˆ ∞

0
dsΨ(s) [I(t+ s > T )(T − t) + I(t+ s < T )s] (6.7)

and

V
2
T = κ

ˆ 0

−∞
dt

ˆ ∞

0
dsΨ(s) [I(t+ s > T )T + I(0 < t+ s < T )(s+ t)] (6.8)

Carefully taking the derivative with respect to T one finds:

∂V
1
T

∂T
= κ

[ˆ T

0
ds sΨ(s) + T

ˆ ∞

T
dsΨ(s)

]
;

∂V
2
T

∂T
= κ

ˆ ∞

T
ds (s− T )Ψ(s).

(6.9)
Hence, the total average executed volume V T = V

1
T +V

2
T is given, for large T , by

V T = κs̄T ≈ qφs̄NT , (6.10)

i.e. the average volume per metaorder Q = qφs̄ times the average number of
metaorders NT . So in this model the average volume flow per unit time is ϕ :=
νQ = κs̄. Note that for large enough T it is dominated by V 1

T .

The average activity (i.e. number of trades per unit time) is given by νφs̄. We will
denote its inverse τ0 := (νφs̄)−1, which is the average time between two trades.
Finally, note that the average number of child orders per metaorder is n̄ := φs̄.

6.3 Order flow imbalance
In this section we compute, within our model, the statistics of the flow imbalance
during periods of duration T . In the case where all trades have the same size q,
volume imbalance is trivially proportional to sign imbalance. It turns out that
due to the heavy tail in metaorder durations, sign imbalance scales anomalously
with T and has non-Gaussian fluctuations, even when the signs of metaorders are
independent.

When single trade volumes are themselves strongly fluctuating, the statistics of
volume imbalance can be very different from those of sign imbalance, a feature we
actually observe on data and reproduce within our framework – see section 6.3.2
below.
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6.3.1 Sign Imbalance
The sign imbalance I0T in an interval of size T is given by a sum of two contributions,
as for the traded volume above:

I0T,1 = φ

ˆ T

0
ε(t)dNt [I(t+ s(t) > T )(T − t) + I(t+ s(t) < T )s] , (6.11)

and

I0T,2 = φ

ˆ 0

−∞
ε(t)dNt [I(t+ s(t) > T )T + I(0 < t+ s(t) < T )(s(t) + t)] . (6.12)

Because E[ε(t)] = 0, these terms are of mean zero. In this subsection and the next,
we assume metaorders to be independent, in particular one has E[ε(t)dNtε(t

′)dNt′ ] =
δ(t− t′)dNt.

The sign imbalance variance is then given by φ2ν times
ˆ T

0
dt

ˆ ∞

0
dsΨ(s) [I(t+ s > T )(T − t) + I(t+ s < T )s]2

+

ˆ 0

−∞
dt

ˆ ∞

0
dsΨ(s) [I(t+ s > T )T + I(0 < t+ s < T )(s+ t)]2 (6.13)

We note that because the indicator functions are non-overlapping, all cross-products
are zero. Taking a derivative with respect to T of the previous expression and
denoting the result D2 we get

D2 =

ˆ T

0
ds s2Ψ(s) + 2T

ˆ ∞

T
ds sΨ(s)− T 2

ˆ ∞

T
dsΨ(s) (6.14)

Suppose for definiteness that

Ψ(s) =
µsµ0
s1+µ

I(s > s0), 1 < µ < 2, (6.15)

corresponding to a sign autocorrelation function decaying as τ−γ with γ = µ−1 <
1, as found in the data [16, 18]. Then the previous expression becomes:

D2 =
2

(2− µ)(µ− 1)
sµ0T

2−µ (6.16)

Hence in this case the variance of the sign imbalance is given by

Σ2 =
2φ2ν

(3− µ)(2− µ)(µ− 1)
sµ0T

3−µ, (6.17)
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i.e. a growth faster than T but slower than T 2. Note that when µ ↗ 2, one
smoothly recovers the expected result for a short-range correlated order flow,
namely Σ2 ∝ T .

One can also compute the fourth moment of the sign imbalance. Focusing on the
I0T,1 contribution, one finds

E[(I0T,1)
4] = φ4ν

ˆ T

0
dt

ˆ ∞

0
dsΨ(s) [I(t+ s > T )(T − t) + I(t+ s < T )s]4 ,

(6.18)

and taking the derivative with respect to T yields

D4 =

ˆ T

0
ds s4Ψ(s) + T 4

ˆ ∞

T
dsΨ(s). (6.19)

When µ < 4, this behaves as T 4−µ, so that the kurtosis of the sign imbalance
distribution behaves as T 5−µ/(T 3−µ)2 ∼ Tµ−1 which grows with T ! An important
consequence is that within our model the sign imbalance does not become Gaussian
for large T .

Generalizing to the 2n-th moment, one finds that it grows with T like T 2n+1−µ

when µ < 2n. This suggests that when µ < 2, the sign imbalance converges at
large T towards a truncated Lévy distribution of index µ for the rescaled variable
I0/T 1/µ, where the truncation takes place for |I0|= T (see [111] for a very similar
calculation, and the Appendix of [112] for a proof). Indeed, one can check that
the moments of such a truncated Lévy distribution scale with T exactly as above.
We will test this prediction in section 6.3.4.

6.3.2 Generalized Volume Imbalance
One can generalize the calculation to the volume imbalance, or in fact to any
power a of the individual traded volume, Ia(T ), given again by the sum two
contributions:

IaT,1 =

ˆ T

0
dN(t)ε(t)qa(t) [I(t+ s(t) > T )(T − t) + I(t+ s(t) < T )s] , (6.20)

and

IaT,2 =

ˆ 0

−∞
dN(t)ε(t)qa(t) [I(t+ s(t) > T )T + I(0 < t+ s(t) < T )(s(t) + t)] .

(6.21)
Note that a = 0 corresponds to sign imbalances and a = 1 to volume imbalances.
Obviously, if q(t) = q at all times, all these imbalances are equal, up to a trivial
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factor, to the sign imbalance computed in the previous section. In the following,
we will assume that metaorders differ not only by their duration s but also by the
size of their child orders, with a joint distribution that we denote as Ψq(s)Ξ(q).
Inspired by empirical data (see below), we posit that metaorders that execute with
larger child order sizes q still have a power-law distributed duration s, but with a
tail exponent µq that increases with q – i.e. have a thinner tail. More precisely,
the conditional distribution Ψq(s) is of the form:

Ψq(s) =
µqs

µq
0

s1+µq
, µq = µ1 + λ log q, (6.22)

where q = 1 is the lot size.

The generalized volume imbalance Ia(T ) still has mean zero and variance Σ2
a now

given by Ia1 + Ia2 :

νφ2

ˆ T

0
dt

ˆ ∞

0
dq q2aΞ(q)

ˆ ∞

0
dsΨq(s) [I(t+ s > T )(T − t) + I(t+ s < T )s]2

+ νφ2

ˆ 0

−∞
dt

ˆ ∞

0
dq q2aΞ(q)

ˆ ∞

0
dsΨq(s) [I(t+ s > T )T + I(0 < t+ s < T )(s+ t)]2

(6.23)

Consider the Ia1 contribution (the Ia2 contribution does not change the conclusion
below):

Σ2
a,1 =

ˆ T

0
du

ˆ ∞

0
dq q2aΞ(q)

ˆ ∞

0
dsΨq(s)

[
I(s > u)u2 + I(s < u)s2

]
(6.24)

The derivative of this quantity with respect to T gives

∂TΣ
2
a,1 =

ˆ ∞

0
dq q2aΞ(q)

[
T 2

ˆ ∞

T
dsΨq(s) +

ˆ T

0
dsΨq(s)s

2

]
(6.25)

Now assume T is large and define q2 such that µq2 = 2. Metaorders with smaller
volumes q < q2 thus have an infinite duration variance (µq ≤ 2), while larger
volumes have a finite variance (µq > 2). The two contributions then read

∂TΣ
2
a,1,1 =

ˆ ∞

0
dq q2aΞ(q)T 2−µq , (6.26)
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and 18

∂TΣ
2
a,1,2 =

ˆ ∞

0
dq q2aΞ(q)

ˆ T

0
dsΨq(s)s

2 =

ˆ q2

0
dq q2aΞ(q)

µqT
2−µq

2− µq
+

ˆ ∞

q2

dq q2aΞ(q)
µq

µq − 2
.

(6.27)
A convenient mathematical description of the right tail of child order sizes is a
log-normal:

Ξ(q) =
1

q
√
2πσ2ℓ

e
− (ℓ−m)2

2σ2
ℓ , (6.28)

with ℓ := log q and m is the most likely value of log q. One then gets:

∂TΣ
2
a,1,1 ∝ e2maT 2−µm

ˆ ∞

0
dℓ e(ℓ−m)(2a−λ log T )−(ℓ−m)2/2σ2

ℓ ∝ e2ma+2σ2
ℓa

2
T 2−µ̃(a)

(6.29)
with µm = µ1 + λm and an effective exponent µ̃ that reads

µ̃(a) = µm + λσ2ℓ (2a−
1

2
λ log T ) (6.30)

Let us fix a range of T where the data is fitted, and assume for simplicity that we
are in a case where 1

2λ log T ≪ 1 while λσ2ℓ = O(1). Then the expression for the
effective exponent µ̃ becomes very simple:

µ̃(a) = µm + 2aλσ2ℓ (6.31)

So the effective exponent µ̃ increases with a, i.e. an exponent 2− µ̃ that decreases
with a. When a = 0, the sign correlation is dominated by the most probable
volumes q = em and we recover the previous result with µ̃ = µm.

For the contribution ∂TΣ
2
a,1,2, one has to separate the cases ℓ < log q2 and ℓ >

log q2. Since the integral over ℓ is dominated by the region ℓ ≈ ℓ∗ = m + 2aσ2ℓ ,
one can use the same expression as above for the first term in Eq. (6.27), when
ℓ∗ < log q2. When ℓ∗ > log q2, ∂TΣ2

a,1,2 is dominated by the second term and
becomes independent of T .

Putting everything together, the predictions of this simple model are thus that

Σ2
a ∝ e2ma+2σ2

ℓa
2 ×

{
T 3−µ̃(a), a < ac(1) :=

2−µm
2λσ2

ℓ
;

T, a ≥ ac(1).
(6.32)

18Note that the apparent divergence for µq = 2 is spurious. In fact, the correct expression
should read:ˆ ∞

0

dq q2aΞ(q)

ˆ T

0

dsΨq(s)s
2 =

ˆ ∞

0

dq q2aΞ(q)
µq

2− µq

(
T 2−µq − s

2−µq

0

)
,

which is finite for all µq.
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In other words, one finds that the variance of the generalized volume imbalance
scales anomalously with T when a is small enough (like the sign imbalance con-
sidered above), but becomes simply diffusive when a is large. Intuitively, it is
because large child orders are much less auto-correlated than small child orders
when λ > 0.19 We will compare these predictions with empirical data in the next
section. Although the model is over-simplified, we will see that it captures the
data semi-quantitatively. Typically, ac(1) is found to be around 2. With µm = 3/2,
we find λσ2ℓ ≈ 1/8, an estimate that will match other observations.

It is interesting to generalize these results to higher moments of the volume im-
balance. Extending the calculation above, one finds

Σ
(2n)
a,1 =

ˆ T

0
du

ˆ ∞

0
dq q2naΞ(q)

ˆ ∞

0
dsΨq(s)

[
I(s > u)u2n + I(s < u)s2n

]
, (6.33)

from which one derives the following result

Σ
(2n)
a,1 ∝

{
T 2n+1−µm−2naλσ2

ℓ , a < ac(n);

T, a ≥ ac(n),
(6.34)

with ac(n) = (1− µm/2n)/λσ2ℓ .

6.3.3 The role of long-range correlations between metaorders

It is known that the signs of metaorders initiated by different traders are also
correlated, see [69, 110]. This may either be due to herding, or more plausibly
to different traders following the same signal. As mentioned above, we assume
that the sign cross-correlation E[ε(t)ε(t + τ)] decays as Γ(τ0/τ)

γ× , whereas the
sizes q and q′ are remain independent for simplicity.20 When Γ = 0, there is no
correlation between successive metaorders.

19 Another mechanism that leads to dependence of the effective exponent of Σ2
a(T ) is the

presence of power-law tails in the distribution of q that can be a confounding factor. If the tail
exponent is equal to ϖ (see section 6.3.4), one expects a crossover value ac(n) given by ϖ/2n,
i.e. when E[q2na] diverges. Although such a mechanism may certainly play a role, it comes in
parallel with the dependence of µq on q for which there is direct evidence, see Fig. 6.3.

20One can extend the following calculations to the case where conditional size distribution of
a metaorder starting at t+ τ , knowing that one metaorder started at t is

Ψq(s
′|s, τ) = τ b

1 + τ b
Ψq(s

′) +
1

1 + τ b
1

s
F (s′/s), (6.35)

where F (.) is a certain function and b a new exponent. The following results are unaffected
provided b > 1.
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When all order sizes q are equal, the variance of the sign imbalance again contains
two terms, one of them reading

Γτ
γ×
0

¨ T

0

du du′

|u− u′|γ×

ˆ ∞

0
dsΨ(s)

ˆ ∞

0
ds′Ψ(s′) [I(s > u)u+ I(s < u)s]

[
I(s′ > u′)u′ + I(s′ < u′)s′

]
.

(6.36)

Taking the derivative with respect to T leads to

Γτ
γ×
0

ˆ T

0

du′

(T − u′)γ×

ˆ ∞

0
dsΨ(s)

ˆ ∞

0
ds′Ψ(s′) [I(s > T )T + I(s < T )s]

[
I(s′ > u′)u′ + I(s′ < u′)s′

]
.

(6.37)

The scaling of this expression with T is found to be T 1−γ× provided µ > 1, i.e.
as soon as the mean size of metaorders is finite. Hence, we get an off-diagonal
contribution to Σ2 that scales as T 2−γ× , which must be compared to the “diagonal”
contribution (i.e. for u = u′ and s = s′) given in Eq. (6.17), which scales as T 2−γ .

In other words, the LMF model [18] that ascribes the main contribution to sign
autocorrelation to long metaorders is only valid if such metaorders are not too
strongly correlated between themselves, i.e. when

γ× ≥ γ. (6.38)

In view of the empirical data supporting the LMF model, we stick to this assump-
tion henceforth. In fact, one can measure γ× directly (G. Maitrier, unpublished,
see also [69]) suggesting γ× ≈ γ.

Let us now include volume fluctuations on top of long-range correlations between
the sign of metaorders. Assuming that the sizes q, q′ of the child orders of two
different metaorders are independent, one finds that the off-diagonal (o.d.) con-
tribution to Σ2

a reads:

(Σ2
a)o.d. ∝ Γe2ma+σ2

ℓa
2
T 2−γ× , (6.39)

to be compared with Eq. (6.32).

With µm = 3/2 and γ× = 1/2, one therefore concludes that as soon as a > 0, the
T → ∞ behaviour of Σ2

a should, in principle, be dominated by the off-diagonal
contribution. However, for a small the two exponents 3 − µ̃ and 2 − γ× are
indistinguishable, and the cross-over time T× beyond which (Σ2

a)o.d. is dominant
soon becomes unreachable when a grows. When a > ac(1) one finds, with Γ =
O(1)

T× ≈ e2σ
2
ℓa

2
. (6.40)

For a = 2 and σ2ℓ = 1, this yields T× ∼ 104 trades, beyond the range of times
scales studied below.

99



Chapter 6.

6.3.4 Empirical observations

For this analysis (as well as the remainder of the Chapter), we have chosen four
assets for which we have trade-by-trade prices and signed volumes. We have
chosen two stocks from the LSE, one small tick stock (LLOY) with a small tick
size, such that the average spread-to-tick ratio equal to ≈ 3. The second is a
medium tick stock (TSCO), with an average spread-to-tick ratio equal to ≈ 1.5.
We also selected two liquid futures contracts: the SPMINI, with a spread-to-tick
ratio of approximately 1.1, and the EUROSTOXX, a large-tick asset with a ratio
close to one (≈ 1.02). For equities, the dataset goes from 2012 to 2015, while
for futures, it covers 2016–2018 for the EUROSTOXX and 2022 for the SPMINI.
This selection allows us to cover two major asset classes actively traded in modern
markets, a wide range of spread-to-tick ratios, and nearly a decade of market
evolution.

Child volume distribution

As discussed in Section 6.3.2, we consider a log-normal distribution for the child
order sizes, as defined by Eq. (6.28). It turns out to be a reasonable approximation
of reality for large volumes, see Fig. 6.1, with values of σℓ reported in the legend,
around 1 for stocks and SPMINI and 1.2 for EUROSTOXX. A better fit of the tail
of the distribution is, arguably, power-law ∝ q−1−ϖ, with ϖ found to be around
2.1 – 2.4. Such a choice makes the mathematical analysis more cumbersome, and
we prefer the log-normal specification for our semi-quantitative discussion of the
role of volume fluctuations. Nevertheless, a power-law tail can play a role similar
to the coefficient λ in µq when it comes to the scaling of Σ(2n)

a , crossing over to a
linear behaviour when 2na ≳ ϖ, see footnote 19.
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Figure 6.1: Comparison between the empirical probability distribution functions of the
executed volume q for the four selected assets, along with a fitted lognormal distribution

in the tail region.

Distribution of sign imbalances

We show in Fig. 6.2 the distribution of rescaled sign imbalances I0T−χ, for dif-
ferent T in trade time and χ = 0.72. The theoretical analysis performed in the
previous sections predicts that such distributions should collapse when χ is chosen
to be 1/µ, where µ = 1 + γ is related to the autocorrelation of the sign of the
trades, which gives µ ≈ 1.4. Although not perfect, the agreement is quite reason-
able, in view of the fact that µ actually depends on the size of the child order q,
see Fig. 6.3. The master curve is clearly non-Gaussian, with tails that become
fatter as T increases, as expected from our theoretical prediction.
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Figure 6.2: Distribution of sign imbalances I0 as a function of the window size T
(measured in number of trades) on EUROSTOXX, between 2016 and 2019. After a

proper rescaling by T−χ, with χ = 0.72, distributions nicely collapse onto a single master
curve, consistent with findings in [37]. The value of χ is not far from the theoretical

prediction χ = 1/µ with µ = 3/2. The dotted line shows a Gaussian distribution with
the same variance as red curve. As expected, the volume imbalance exhibits fat tails.

Sign autocorrelation function for different child volumes

Intuitively, the sign of large child orders should have shorter memory than small
ones. Traders who have large quantities Q to execute is likely to trade small lots
in order not to reveal information, whereas smaller Q might be possible to execute
in a few shots.

In order to test this hypotheses, we define five logarithmic bins for the rescaled
volume q̃ = q/ϕD where ϕD is the daily traded volume. We then compute for each
bin the autocorrelation function CB(q̃)(τ) = E[εB(q̃)(t)εB(q̃)(t + τ)]. We removed
the largest bin, as it contains outliers, and present the four other autocorrelation
functions in Fig. 6.3, in log-log, together with the unconditional autocorrelation
function. As expected, the effective memory exponent γ increases with q, going
from 0.6 to 1.3. We take this observation as a qualitative justification of the
specification proposed above, i.e. that µq = 1+γq = µ1+λ log q, which as we now
show, allows us to make quantitative predictions for the scaling of the generalized
volume imbalances Ia(T ).
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Figure 6.3: Evolution of the sign autocorrelation of market orders based on their
corresponding volume bin B(q). We used data from the EUROSTOXX, between 2016
and 2019 rescaling market order volume q by the daily traded volume. Our findings
indicate that larger market orders tend to be less correlated than smaller ones. Note

that nearly 4% of market orders fall into the largest bin.

Scaling of the generalized volume imbalances

Our model predicts that the even moments Σ(2n)
a of the generalized volume imbal-

ances Ia scale with T with exponents that depend on a, see Eq. (7.4). In order to
test this prediction empirically, we first remark that trade-by-trade data typically
exhibit numerous outliers (such as block trades, fat fingers etc...). These outliers
can substantially influence the empirical estimation of the diffusion coefficient,
particularly for large values of a. Consequently, trades quantities were clipped
beyond 1% of the daily volume.

The moments Σ
(2n)
a for n = 1, 2, 3 are shown in Fig. 6.4 as a function of a. Re-

markably, the theoretical predictions qualitatively reproduce the empirical data,
in spite of the rather uncontrolled approximations made in the calculations. In
particular, we do find that for large enough a, all these moments scale propor-
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tionally to T , whereas super-linear behaviour in T is observed for small a, as a
consequence of the long memory of order signs. Such behaviour is washed away
when we look at large volumes only, i.e. when a is large enough.

Looking in particular at the curves for n = 1, we see that µ̃(a) decreases from
µ̃(a = 0) ≈ 3/2 to µ̃(a = ac) ≈ 2 with ac ≈ 1 for large tick EUROSTOXX and
ac ≈ 2 for smaller tick LLOY, TSCO and SPMINI. From Eq. (6.31), we deduce
that λσ2ℓ ≈ 1/4 for EUROSTOXX, and λσ2ℓ ≈ 1/8 for LLOY, TSCO and SPMINI.
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Figure 6.4: Data for LLOY, TSCO, SPMINI and EUROSTOXX. Right column:
scaling of the different moments Σ

(2n)
a as a function of trade time T , from which we

extract the exponent from a regression of the data in log-log. Left column: scaling
exponent as a function of a. As predicted by our model, increasing the value of a – i.e.

giving more weight to orders with large volume – reduces the value of the exponent,
which reaches unity for a > ac(n) with ac(1) ≈ 2 for LLOY, TSCO and SPMINI, and

ac(1) ≈ 1 for EUROSTOXX.
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6.4 The Impact-Diffusivity puzzle and a generalized prop-
agator

We now discuss the problem of whether the volatility of price changes can be
explained chiefly in terms of the impact of intertwined metaorders of different sizes
and signs that get executed in the market. We will first recall how price diffusivity
and long-memory of order flow are reconciled within the standard “propagator”
framework, and then show how the issue becomes much more perplexing when
the impact of metaorders obeys the square-root law. Three possible resolutions
are proposed, together with their strengths and weaknesses.

6.4.1 Price diffusivity within the propagator model
We first assume the impact of single orders is given by a deterministic propagator
model, i.e. the average price change due to an order of volume q executed at time
t = 0 is θ(q) which then decays as [7, 31]

G(t) = θ(q)

(
τ0

t+ τ0

)β

, (6.41)

where τ0 is the average time between two child orders. The average impact of a
single metaorder of volume Q, duration s ≫ τ0 and chosen participation rate φ̃
(such that Q = qφ̃s) is then given by21

I(t ≤ s) = θ(q)

ˆ t

0
dt′ φ̃

(
τ0

t− t′

)β

= I0(q, φ̃)t1−β , I0(q, φ̃) :=
φ̃θ(q)τβ0
1− β

.

(6.42)
The peak impact I(s) reads

I(s) = φ̃θ(q)s1−βτβ0
1− β

=
θ(q)qβ−1(φ̃τ0)

β

1− β
Q1−β , (6.43)

which reveals one problematic flaw of the propagator model: for β = 1/2, peak
impact does not only depend on Q, as empirically observed, but also on q and φ̃.
Although one can always choose θ(q) ∝ q1−β to get rid of the q dependence, one
is still left with a square-root dependence on the participation rate φ̃.

After the end of the metaorder, impact decays (see Fig. 6.5) and is given by

I(t > s) = θ(q)

ˆ s

0
dt′ φ̃

(
τ0

t− t′

)β

= I0(q, φ̃)
(
t1−β − (t− s)1−β

)
. (6.44)

21Here we distinguish the participation rate of a specific metaorder, φ̃, from the average par-
ticipation rate of the whole market, φ.
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Note that this last expression behaves as I(s)(s/t)β for t≫ s.

For simplicity, we assume for now that all market orders have the same volume q,
and model the price variation ∆T over time T as the superposition of the average
impact of metaorders, neglecting fluctuations that will be considered in section
6.4.5 below.

Price variations are then given by the sum of two terms, ∆T,1 describing the impact
of metaorders initiated within [0, T ], and ∆T,2 the decaying impact of metaorders
initiated before t = 0:

∆T,1 = I0(q, φ)
ˆ T

0
dNt ε(t)

[
I(t+ s > T )(T − t)1−β (6.45)

+I(t+ s < T )
(
(T − t)1−β − (T − t− s)1−β

)]
(6.46)

and

∆T,2 = I0(q, φ)
ˆ 0

−∞
dNt ε(t)

[
I(t+ s > T )

(
(T − t)1−β − (−t)1−β

)
+I(t+ s < T )

(
(T − t)1−β − (T − t− s)1−β − (−t)1−β

)]
(6.47)

The average of ∆T over ε is of course nil, and its variance is given by two contri-
butions :

Σ2
T,1 = I20 (q, φ)ν

ˆ T

0
du

ˆ ∞

0
dsΨ(s)

[
I(s > u)u2(1−β) + I(s < u)

(
u1−β − (u− s)1−β

)2]
(6.48)

and

Σ2
T,2 = I20 (q, φ)ν

ˆ ∞

T
du

ˆ ∞

0
dsΨ(s)

[
I(s > u)

(
u1−β − (u− T )1−β

)2
+I(s < u)

(
u1−β − (u− s)1−β − (u− T )1−β

)2]
(6.49)

All these contributions can be exactly computed for large T when Ψ(s) decays as
a power-law s−(1+µ), but provided µ < 2 the scaling can simply be obtained by
the change of variables s = xT , u = yT , that yields

Σ2
T := E[∆2

T ] ∝ I20 (q, φ)T 3−2β−µ. (6.50)

Hence, we see that metaorders contribute to volatility provided 3 − 2β − µ = 1.
This equality coincides, as expected, with the critical condition 2β = 1−γ derived
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within the propagator model (recall that γ = µ − 1). When β < (1 − γ)/2, the
price is super-diffusive (i.e. ≫ T ), whereas when β > (1− γ)/2, the contribution
of the average impact of metaorders to price variance is negligible, i.e. o(T ).

In order to recover the square-root impact law, one should naively set β = 1/2,
such that 3 − 2β − µ = 1 − γ. But the contribution of metaorders to volatility
Σ2
T would be then subdominant at long times, unless γ → 0 (i.e. an hyper-slow

decay of the sign autocorrelation function). Note that the choice β = 1/2−, γ = 0+

corresponds to the model advocated by Jusselin & Rosenbaum [51], but is difficult
to reconcile with the empirically determined value γ ≈ 0.5 [16]. This value of γ,
in turn, means that a square-root impact appears to be unable to generate price
diffusion, since in this case 3− 2β − µ ≈ 0.5 < 1.

One could then argue that volatility does not primarily come from the average
impact of metaorders, but rather from its fluctuations, a possibility that we explore
in section 6.4.4 below. But in any case, the propagator model with β = 1/2 fails
to account for two important stylized facts:

• Injecting β = 1/2 into Eq. (6.42), one finds, as already mentioned above,
I(s) ∝

√
φ̃τ0
√
Q when θ(q) =

√
q (as indeed suggested by the data of

[2]). Hence, one recovers the square-root law I(Q) = Y
√
Q but with an

extra square-root dependence of the prefactor Y on the participation rate φ̃,
when empirical data show that Y is all but independent of φ̃.

• The decay of impact after the end of a metaorder, when fitted with Eq.
(6.44), suggests a value β ≈ 0.2 < 1/2 [2, 44, 93], i.e. a much faster short
time decay and a much slower long time decay than predicted by β = 1/2.

We conclude that the propagator model, even with β = 1/2 cannot fully explain
the observed impact of metaorders, nor its post-execution decay. In the following
sections, we explore different routes to reconcile metaorder impact with long-term
volatility.

6.4.2 A generalized propagator model

As we just discussed, the square-root price profile during the execution of the
metaorder and the subsequent impact decay cannot be captured within the stan-
dard propagator model. Here we propose a (somewhat ad-hoc) extension of this
model that allows one to decouple these two profiles. We will not attempt to fully
justify such a proposal from first principles, but use the resulting equations as a
convenient way to capture the known phenomenology of metaorder impact.

Let us assume that once a metaorder has started, the market slowly adapts and,
in the spirit of the LLOB model [7, 74], progressively provides more liquidity
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to absorb the incoming flow. We represent this effect as a two-time propagator,
describing the impact of a child order occurring at time t′ after the start of the
metaorder on the price at time t > t′:

G(t′ → t) =
θ(q)

(φ̃t′ + n0)1/2−β

(
τ0

t− t′ + τ0

)β

, (β <
1

2
) (6.51)

where τ0 is the average time between two trades and φ̃×t′ is number of child orders
executed since the start of the metaorder, which have eaten into the LLOB and
therefore reveal more hidden liquidity. n0 is the number of trades after which the
metaorder is statistically detected by liquidity providers. The immediate impact
of a child order is thus

G(t′ → t′) =
θ(q)

(φ̃t′ + n0)1/2−β
(6.52)

which decreases with t′, as liquidity adapts.

The impact of a metaorder of duration s≫ τ0 and φ̃s≫ n0 is now given by 22

I(t ≤ s) ≈ θ(q)
ˆ t

0
dt′

φ̃1/(2+β)

t′1/(2−β)

(
τ0

t− t′

)β

= I1(q, φ̃)
√
t. (6.53)

with

I1(q, φ̃) := Bβ
√
φ̃θ(q)(φ̃τ0)

β , (6.54)

where Bβ = 2Γ(1/2 + β)Γ(1− β)/
√
π.

After the end of the metaorder, impact now decays as

I(t > s) = I1(q)
√
s

[(
t

s

)1−β

−
(
t

s
− 1

)1−β
]
, (6.55)

which reproduces the empirical decay of metaorders if one chooses β ≈ 0.2. With
θ(q) ∝ √q, the peak impact then reads

I(Q) ∝ (φ̃τ0)
β
√
Q, (6.56)

which still depends on the participation rate, but now with a smaller exponent
β = 0.2, more difficult to exclude empirically.

22Note that when s ≫ τ0 but φ̃s ≲ n0, impact behaves as in the standard propagator model
as t1−β . If β ≈ 0.2, such a behaviour is much less concave than a square-root, in agreement with
the results of [2, 79].
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One could have hoped that the slower relaxation of impact in the post-execution
regime would help recover a linear-in-T behaviour of Σ2

T := E[∆2
T ]. Unfortunately,

one finds that the contribution of metaorder impact to Σ2
T scales as

Σ2
T ∝T→∞

{
T 1−γ , γ < 2β;

T 1−2β , γ > 2β,
(6.57)

which is again sub-diffusive whenever β > 0 and γ = µ − 1 > 0. In other words,
price diffusion is only possible when impact is permanent, i.e. β = 0. This is in fact
the assumption made by Sato & Kanasawa in their latest paper [101]. However,
all empirical data known to us suggest that impact decays, at least over short to
medium time scales [3, 44, 80, 83], which according to our calculation should lead
to substantial price mean reversion on such time scales.

We now turn to three possible resolutions of the diffusion “paradox”: one based
on the autocorrelation of the sign of metaorders, a second one based on the per-
manent impact of large child orders, and the last one based on permanent impact
fluctuations.

Figure 6.5: Comparison of the three main theories of impact decay for a metaorder of
size s = 10. During the execution phase (blue), impact follows a square-root impact

growth, i.e. ∝
√
t, where t denotes the index of the child order [2, 83]. In the

post-execution phase (red), impact may either remain permanent (solid line) or decay
(dashed). Two distinct decay mechanisms are illustrated: one based on the generalized

two-time propagator as t−β with β = 0.2, and the other on the LLOB theory,
corresponding to β = 1

2 .
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6.4.3 The role of metaorder autocorrelations
What happens if we assume, as in section 6.3.3, that metaorders themselves are
autocorrelated, with a new exponent γ×? Extending the calculation of E[∆2

T ] the
case γ > β − 1/2 (always satisfied when β < 1

2), we find that these correlations
contribute to volatility as

E[∆2
T ]o.d. ∝ ΓT 2−γ×−2β . (6.58)

This leads to diffusion provided γ× = 1− 2β, which is, not surprisingly, the same
condition as for the standard propagator model but with γ replaced by γ×. Indeed,
after coarse graining metaorders into effective single orders, we are back to the
usual propagator model.

For β = 0.2, this gives γ× = 0.6, which is close to γ itself and close to its em-
pirical value [69] and G. Maitrier (unpublished). It is also compatible with the
bound obtained in Eq. (6.38), which ensures that the autocorrelation of signs is
dominated by the size distribution of metaorders, as postulated by [18] and firmly
established in [16].

The resulting value of volatility σ2, defined as Σ2
T /T , is given by

σ2 = C(β, γ×)Γν
2τ

γ×
0 I

2
1 (q, φ)

(
s

1
2
+β
)2
, (6.59)

where C(β, γ×) is a numerical coefficient found to be ≈ 5.6 for γ× = 0.6 and
β = 0.2 .

With θ(q) = θ0
√
q and ϕ = νqφs̄, we finally find

θ0 = Y
σ√
ϕ
, Y ∝ n̄

1
2
−β

√
CΓ

, (6.60)

where we have assumed that (s
1
2
+β)2 ∝ s̄1+2β, which is justified in the present

case since the (1/2 + β)-th moment of s converges (whenever µ = 1+ γ > 1
2 + β).

We recall that n̄ = φs̄ is the average number of child orders per metaorder.

This result is interesting since the peak impact is then precisely given by the
standard square-root law, up to a weak participation rate dependence:

I(Q) ∝ (φ̃τ0)
β σ

√
Q

ϕ
. (6.61)

Note that we find naturally that impact is proportional to volatility, simply be-
cause volatility is due to impact!
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The above calculation can be generalized to higher moments of ∆T . Assuming
Wick-like factorisation of E[ε(t1) · · · ε(t2n)] as

E[ε(t1) · · · ε(t2n)] ∝
∏
i ̸=j

|ti − tj |−γ×

︸ ︷︷ ︸
n pairs

, (6.62)

it is easy to show that the 2n-th moment of ∆T scales as:

Σ
(2n)
T ∝ T 2n(1−β)−nγ× = Tn, (6.63)

as indeed observed empirically (up to subleading corrections that can also be
rationalized within our framework), see Fig. 6.6.

Note that we do not observe mutifractality (i.e. Σ
(2n)
T ∝ T ζn with ζn ̸= n) because

we work in trade time and not in real time. As it is well known, multifractal effects
come from intermittent fluctuations of the activity rate ν, see e.g. [51, 113]. An
interesting extension of our model, which we leave for future work, would be to
assume that ν itself has fractal properties.
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Figure 6.6: Scaling of the moments of price changes |∆T |2n as a function of trade time
T . We normalized the moment values such that all curves begin at 1 for T = 1. As

shown, a sublinear behavior is found at short times for n > 1, likely attributable to price
jumps that may dominate for short time scales when n increases. Therefore, we fitted

the data as Σ(2n) = a0 + a1T
ζn and present the values of ζn in the legend. We find in all

cases ζn ≈ n, up to subleading corrections that we attribute to volume fluctuations.

6.4.4 The role of volume fluctuations

Another possibility is to take seriously the fact that the size q of child orders is
fluctuating and correlated with the duration s of metaorders. As we have shown
in section 6.3.2, a dependence of the exponent µq on q explains how different
moments of the volume imbalance depend on T , see Eqs. (6.32), (7.4). It is also
in agreement with direct empirical results, see Fig. 6.3.
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Now, similarly to µq, we might assume that the impact decay exponent β becomes
q-dependent: βq = β1 − λ′ log q.23 One then observes that price impact becomes
permanent for large child orders, with q > q0 such that βq ≤ 0. When metaorder
signs are independent, the non-vanishing contribution to volatility then reads:

E[∆2
T ]q>q0 = ν

ˆ ∞

q0

dq Ξ(q)I21 (q, φ)
ˆ T

0
du

ˆ u

0
dsΨq(s)s (6.64)

≈T→∞ νT

ˆ ∞

q0

dq Ξ(q)I21 (q, φ)s̄q (6.65)

Taking θ(q) = θ0
√
q one gets I1(q > q0, φ) = 2θ0

√
φq, so the long-term price

volatility is given by

σ2 =
E[∆2

T ]q>q0

T
∝ θ20ϕ0, (6.66)

where ϕ0 is the average volume flow of the market, restricted to “large” child
orders q > q0. Interestingly, this relation can be read backwards as

θ0 ∝
σ√
ϕ0
, (6.67)

allowing one to recover the full square-root impact law from the expression of I1
above:

I(Q|q, φ̃) = Y (q, φ̃)σ

√
Q

ϕ
, Y (q, φ̃) ∝ (φ̃τ0)

βq

√
ϕ

ϕ0
. (6.68)

We see that this result suggests a weak dependence of the prefactor of the square-
root law in q and φ̃, which disappears for large enough q > q0, since βq → 0 in
that case. However, in that case Y would be substantially larger than empirically
observed, since from Fig. 6.3 we estimate ϕ0 ≈ 0.1ϕ. Besides, since child orders
of size < q0 (which are the most numerous) only impact prices temporarily, this
scenario would lead to strong visible mean-reversion in prices not observed in data
– see e.g. Fig. 6.6 for n = 1.

It is, however, important to discuss how volume fluctuations might affect the result
Eqs. (6.57), (6.58) above, induced by the correlation between different metaorders.
It is plain to extend the calculations of section 3.3 to get

E[∆2
T ]o.d. ∝ Γem+

σ2ℓ
4 T 2−γ×−2βm+λ′σ2

ℓ , (6.69)

23A sufficient condition for price diffusivity in the standard propagator model is β1 = 1−µ1/2
and λ′ = λ/2, but we will not impose such constraints below and leave λ and λ′ free.
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whereas a similar calculation for the diagonal contribution gives

E[∆2
T ]d. ∝ em+

σ2ℓ
2 T 1−2βm+2λ′σ2

ℓ . (6.70)

The ratio of the prefactors is now only eσ
2
ℓ /4/Γ in favor of the diagonal term.

This means that the off-diagonal contribution, with a larger power of T , becomes
dominant beyond a reasonable small value of T when σ2ℓ = 1 and Γ = O(1). We
will therefore choose in the following γ× = 0.6 and β̂(0) := βm− 1

2λ
′σ2ℓ = 0.2, such

that the off-diagonal contribution is exactly diffusive.

6.4.5 The role of impact fluctuations
Up to now, we have assumed deterministic impact and neglected the role of price
changes induced by “news” or other order book events that are not related to
trades, with the ambition of recovering all the price volatility from the impact of
metaorders. However, it is clear that:

• (i) news events do obviously exist (see e.g. [56] for a recent discussion)
and should indeed contribute to volatility. In fact, Efficient Market Theory
predicts that the only contribution to volatility comes from news!

• (ii) the impact of a given metaorder has no reason to be deterministic: it
should depend on specific time-dependent market conditions and thus in-
clude a random component.

Such a random component was in fact indirectly observed by Bucci et al. [70],
where it was found that the effect of a single metaorder on price changes reads

∆T = pT − p0 ≈ εI(Q) [1 + zη] , (6.71)

where η is a zero mean, unit variance, independent random variable, and z a
coefficient measuring the relative fluctuations of impact, found to be around 3 in
[70].24

Let us postulate that, while the average impact decays to zero with time as per the
propagator model, the random component zη does not, or at least not completely.
This assumption does not violate any known stylized facts about the average
decay of impact. Following these ideas, we expect price changes ∆T to include
extra terms that read

∆T,1 = z∞θ0
√
qφ

ˆ T

0
dNt ε(t)

[
I(t+ s > T )

√
T − t+ I(t+ s < T )

√
s
]
ηt+σF ξ

√
T ,

(6.72)
24Note that there is an error in that paper, where z, called a there, was reported to be around

0.1.
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where z∞ ≤ z accounts for a possible time decay of the random component of
impact, and the last contribution captures fundamental “news”, with a volatility
σF . (ξ is another zero mean, unit variance, independent random variable).

This gives rise the following contribution to volatility:25

Σ2
T = E[∆2

T ]η,ξ = z2∞θ
2
0qφν

ˆ T

0
du

ˆ ∞

0
dsΨ(s) [I(s > u)u+ I(s < u)s] + σ2FT,

(6.73)
whence a long-term volatility given by

σ2 = σ2F + z2∞θ
2
0qφνs̄ ≡ σ2F + z2∞θ

2
0ϕ, (6.74)

where ϕ = qφνs̄ is, again, the average volume flow in the market.

This expression is quite interesting: inserting θ0 = Y σ/
√
ϕ, we get, provided

Y z∞ < 1:26

σ2 =
σ2F

1− Y 2z2∞
, (6.75)

i.e. excess volatility induced by trading, independently of its information content.
This is in line with the empirical results of [114] (section 4), [33] and [7] (Figs.
13.2 and 14.5), and is of course related to the well-known excess volatility/excess
trading puzzle, see e.g. [57, 108, 109] and [7], chapters 2 & 20, see also [52, 87,
106] for related discussions.

Hence, even if the deterministic, decaying part of impact does not contribute to
long-term volatility, its fluctuations might do the job. Of course, this somewhat
contorted scenario relies on the assumption that the random component of impact
has a permanent contribution to price changes, i.e. z∞ > 0. Although this
hypothesis is somewhat ad-hoc, the non-trivial result here is the relation between
price impact and volatility given by

I(Q) ∝

√
σ2 − σ2F
z2∞

×

√
Q

ϕ
. (6.76)

If, on the other hand, the permanent contribution z∞ vanishes, then trivially
σ2 = σ2F . This is the Efficient Market picture, where uninformed trades do not

25Note that since E[εη] is assumed to be zero, there is no particular role for metaorder correla-
tions in this scenario. One could however wonder how the result given in Eq. (6.57) might change
if we assume “informed metaorders”, i.e. some correlations between the sign of the metaorder ε
and the subsequent fondamental price change ξ, see section 6.5.5. The result is a contribution to
Σ2
T proportional to ρT 1−β , which is subdominant at large T .
26Note that the same expression would hold with z∞ = 1 and Y given by Eq. (6.60) if on

top of the off-diagonal contribution to volatility one would add a fundamental contribution. The
following discussion can thus be transposed to that case as well.
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contribute to long-term volatility and our whole construction breaks down. How-
ever, this would leave θ0 undetermined and would not allow rationalizing why θ0
is proportional to σ/

√
ϕ, as found empirically. Furthermore, the impact of unin-

formed metaorders (which is probably a large fraction of all metaorders) would
generate large price reversion effects, which again are not observed.

6.4.6 Discussion

We thus have three possible scenarios for generating long term volatility from
the impact of metaorders. The idea that metaorders are correlated between one
another, with roughly the same long memory as within each one of them, seems
plausible, is compatible with available data and provides a natural extension of
the propagator scenario: diffusive prices emerge from the subtle interplay between
decaying impact and autocorrelated order flow. Such a scenario predicts a weak
dependence of the prefactor Y of the square-root law with the participation rate
of the metaorder, as φ̃β with β ≈ 0.2.

The second scenario, which attributes long term to the non-decaying impact of
metaorders executed with large child orders does not seem very credible to us,
because it would lead to substantial mean-reversion effects due to the impact
decay of small child orders, which is at odds with empirical decay.

Finally, long term volatility may result from the random component of impact,
assumed to be permanent. This bypasses the paradox that average impact decays
and, in the absence of correlations between metaorders, should lead to subdiffu-
sion. In such a scenario, volatility is induced by trading activity alone, even if
average impact was zero. Still, the fact that impact fluctuations are proportional
to average impact, as postulated in Eq. (6.71), is important to recover the cor-
rect relation between peak impact I(Q) and σ

√
Q/ϕ, Eq. (6.76), which is now

independent of φ̃.

We now turn to the study of the covariance of price changes and volume imbalances,
to see whether we can constrain the theory further. We will indeed see that the
data strongly favors an interpretation based on the average impact of correlated
metaorders. The last scenario, where volatility arises from the fluctuating part of
impact, does not pass the test.

6.5 Covariance between order flow imbalance and prices
changes

Another quantity that can be computed within our model and easily measured
empirically using the public tape of trades and prices is the “aggregated” impact
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E[∆|Ia], conditioned to a certain value of imbalance Ia, as studied in [37, 115].
We know that such a quantity behaves very differently from the square-root law,
and has non-trivial scaling properties as a function of T , see [37] for a = 0 and
a = 1. For a = 0, in particular, one finds that the initial slope of E[∆|I0] as a
function of I0 scales like T−ω with ω ≈ 1/4 [7, 37], a result we confirm in Fig. 6.7.

Note that if Ia and ∆ were Gaussian variables one could use the following general
relation to predict that slope:

E[∆|Ia] = E[∆ · Ia]
Σ2
a

Ia, (6.77)

i.e. a linear aggregate impact for small imbalances, where Σ2
a was defined in section

6.3.2. However, in our model the Gaussian assumption does not hold since Ia is a
truncated Lévy variable (see section 6.3.2). Hence the exact calculation of E[∆|Ia]
is much more intricate, and we restrict the following analysis to the covariance
E[∆ · Ia], which we compare to empirical data below. Still, naively applying Eq.
(7.8) will predict a scaling in T−ω, albeit within an uncontrolled approximation.
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Figure 6.7: Aggregated impact versus sign imbalance for the EUROSTOXX. After
appropriate rescaling, curves for different T nicely collapse onto a single master curve.
The y-axis rescaling reflects the diffusive nature of the price, while the x-axis rescaling

captures trade sign correlations, as detailed in section 6.3. In this case, we find
ω = χ− 1

2 ≈ 0.22.
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6.5.1 Without volume fluctuations

Since impact fluctuations, considered in section 6.4.5, are independent of the order
imbalance (i.e. E[εη] = 0), we can restrict the calculation to the deterministic part
of impact, which is given by the generalized propagator model above. Neglecting
any sign correlations between different metaorders, we thus get, when all child
orders have the same size:

E[∆T · IaT ] = νφqaI1(q, φ)
ˆ T

0
du

ˆ ∞

0
dsΨ(s)

[
I(s > u)u

√
u (6.78)

+I(s < u)s
√
s
(
(
u

s
)1−β − (

u

s
− 1)1−β

)]
. (6.79)

This quantity scales like T 1−β whenever µ > 3/2+ β and like T 5/2−µ otherwise.27

Note that if one disregards the non-Gaussian nature of I0 and uses Eq. (7.8) to
compute the initial slope of the aggregate impact, one finds (using Eq. (6.17))
ω = 1/2 when µ = 3/2 and β > 0, which is far from the empirical value ω ≈ 1/4.
As we shall see in the following, empirical results suggest a strong dependence on a,
meaning that volume fluctuations certainly cannot be neglected in this calculation.

6.5.2 With correlated metaorders

One can extend the result above to account for correlated metaorders. Assuming
γ > 0 and β < 1/2, the “non-diagonal” contribution t ̸= t′ gives a contribution
that scales as

E[∆T · IaT ]o.d. ∝ Γ qa+
1
2 T 2−β−γ× , (6.80)

to be compared with the above results, i.e. T 1−β or T 5/2−µ. When γ× < 1, the
non-diagonal contriburion is always dominant at large T compared to T 1−β and
becomes subdominant compared to T 5/2−µ = T 3/2−γ when β + γ× > 1/2 + γ.

For γ = γ× and β < 1
2 we thus deduce that the “off-diagonal” contribution is

always dominant for large enough times. The corresponding value of the slope
exponent ω is now equal to β + γ× − γ, and is thus very close to the empirical
value ω ≈ 1/4 when γ× ≈ γ and β ≈ 0.2.

6.5.3 With correlated metaorders and volume fluctuations

Let us now add volume fluctuations, with a q-dependent value of µq as given by
Eq. (6.22) and βq = β1 − λ′ℓ, with ℓ = log q. Now, there exists a value q = q′c
such that 5/2− µq′c = 1− βq′c .

27Note that for the standard propagator model, one finds that the scaling is always T 3−β−µ

when µ > 1.
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Then, using I1(q, φ) ∝
√
q, one gets, for the diagonal contribution

Eq[∆T · IaT ]d. ∝
ˆ q′c

0
dq Ξ(q) qa+

1
2T 5/2−µq +

ˆ ∞

q′c

dq Ξ(q) qa+
1
2T 1−βq , (6.81)

and for the off-diagonal contribution

Eq[∆T · IaT ]o.d. ∝ ΓE[qa]
ˆ ∞

0
dq Ξ(q) q

1
2T 2−γ×−βq , (6.82)

Repeating the same calculations as in section 6.3.2, we now get:

Eq[∆T · IaT ]d. ∝ T 5/2−µm

ˆ ℓ′c

0
dℓ e(ℓ−m)(a+ 1

2
−λ log T )−(ℓ−m)2/2σ2

ℓ

+ T 1−βm

ˆ ∞

ℓ′c

dℓ e(ℓ−m)(a+ 1
2
+λ′ log T )−(ℓ−m)2/2σ2

ℓ . (6.83)

When (λ, λ′) log T ≪ 1, the Gaussian integrals are dominated by the region around
ℓ⋆ = m + σ2ℓ (a + 1/2). So, schematically, when ℓ⋆ < ℓ′c := log q′c the first integral
dominates, while for ℓ⋆ > ℓ′c the second integral dominates. Hence, the dominant
term scales as:

Eq[∆T ·IaT ]d. ∝ em(a+ 1
2
)+ 1

2
σ2
ℓ (a+

1
2
)2

{
T 5/2−µ̂(a), µ̂(a) = µm + (a+ 1

2)λσ
2
ℓ a < a′c;

T 1−β̂(a), β̂(a) = βm −
(
a+ 1

2

)
λ′σ2ℓ a > a′c,

(6.84)
where a′c is such that µ̂(a′c) = µq′c .

The power of T coming from the diagonal contribution is thus predicted to decrease
with a when a < a′c and then to increase with a for larger a. Hence we expect an
interesting non-monotonic behaviour of the effective exponent as a function of a,
i.e. with the relative weight given to child orders with large volumes.

The off-diagonal contribution, on the other hand, gives:

Eq[∆T · IaT ]o.d. ∝ Γ em(a+ 1
2
)+ 1

2
σ2
ℓ (a

2+ 1
4
) T 2−γ×−β̂(0). (6.85)

Note that the coefficient in front of the power-law is Γe−σ2
ℓa/2 smaller than the

one corresponding to the diagonal contribution. Other numerical prefactors may
however contribute as well, that were neglected in the rough estimate of the above
integrals. The final theoretical prediction is that Eq[∆T · IaT ] is the sum of three
power-law contributions:

• T 5/2−µ̂(a), with an exponent equal to 1 for a = 0 and decreasing as a in-
creases,
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• T 1−β̂(a), with an exponent equal to ≈ 0.8 for a = 0 and increasing as a
increases,

• T 2−γ×−β̂(0), with an exponent independent of a and equal to ≈ 1.2 for the
default values of γ×, β̂(0).

In section 6.5.7 below, we will show that empirical data can be fitted as a power-
law of T , with an effective exponent that indeed behaves non-monotonically with
a, which suggests (λ, λ′)σ2ℓ in the range 0.1–0.2, also in line with the condition
already obtained in section 6.3.2.

Finally, note that the slope exponent ω, naively predicted from Eq. (7.8) for a = 0
is

ωd. =
1

2
+ µ̂(0)− µ̃(0) = 1

2
(1 + λσ2ℓ ), ωo.d. = 1− µ̃(0) + γ× + β̂(0), (6.86)

depending on whether the diagonal or off-diagonal contribution dominates. Nu-
merically, with λσ2ℓ = 1/8 and γ× + β̂(0) = 0.8, one finds ωd. ≈ 0.56 and
ωn.d. ≈ 0.30, close to the empirical value 1/4 in the second case.

6.5.4 With a random impact component
Quite interestingly, if the random component of impact (see Eq. (6.71)) is assumed
to be such that E[εη] = 0, it will not contribute to the covariance between price
changes and order imbalance. Indeed, by definition such a contribution to price
changes does not contribute to the covariance between price changes and order
imbalance. In such a scenario, only the fundamental component can contribute
to the covariance, provided some metaorders are “informed”, as we show next.

6.5.5 With “informed” metaorders
Up to now, we assumed that there are no correlations between the sign of metaorders
ε and the “Fundamental” component of price changes on time scale T , σF ξ

√
T ,

see Eq. (6.71). If we rather assume that E[εξ] = ρ/
√
νT , where ρ measures

the average amount of information of individual metaorders,28 we find an extra
contribution to E[∆T · IaT ] that reads:

E[∆T · IaT ] = ρ
√
νφqaσF

ˆ T

0
du

ˆ ∞

0
dsΨ(s) [I(s > u)u+ I(s < u)s] . (6.87)

28For a detailed discussion of the scaling with T , see [87], section 16.1.3. The idea is that out
of NT = νT metaorders of random signs, an excess fraction ∼

√
νT is possibly informed. It is

important to stress that, in the spirit of the Kyle model [75], the fundamental component σF ξ
√
T

is not a mechanical consequence of impact.
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Extending the calculation above, we now find that this covariance scales as T 2−µ

for µ < 1 and as T for µ > 1, which is the case we focus on here. Note that the
naive prediction for the slope exponent ω (from Eq. (7.8)) is ω = 2− µ.

Hence, we find that such a fundamental contribution predicts a linear scaling of
E[∆T · IaT ] as a function of T , independently of a.

6.5.6 The correlation coefficient
Finally, we turn our attention with a natural description of the interplay between
(generalized) volume imbalance and price changes, namely the following correla-
tion coefficient

Ra(T ) :=
E[∆T · IaT ]
ΣTΣa

, ΣT :=
√

E[∆2
T ], Σa :=

√
E[Ia2T ] (6.88)

In order to simplify the discussion, we assume that the crossovers between the two
regimes for Σ2

a (Eq. (6.32)) and for E[∆T ·IaT ] (Eq. (7.5)) occur for the same value
of a = ac = a′c. Although this is not precisely true, the following conclusions will
be qualitatively correct.

In the case where the sign of metaorders and the fundamental component of price
changes are independent (ρ = 0) and the off-diagonal contribution can be neglected
(Γ = 0), we find that for T ≫ 1:

Ra(T )d. ∝ e
σ2ℓ
2
a(1−a) ×

{
T (1−µm−λσ2

ℓ )/2, a < ac;

T−β̂(a), a > ac.
(6.89)

A more refined analysis would be needed for small values of T , but from such an
analysis we conclude that Ra(T ) should be decreasing with T for small values of
a (since µm ≈ 3/2) and saturating for large values of a (since β̂(a > a′c) = 0).
Furthermore, note the non-monotonic behaviour (in a) of the prefactor in Eq.
(6.89).

If we now consider the contribution coming from the correlation between metaorders,
we get:

Ra(T )o.d. ∝ e−
σ2ℓ a

2

2 × Tµm/2+aλσ2
ℓ−γ×−β̂(0). (6.90)

For a → 0, the power of T is very close to zero for our default choice of param-
eters. For higher values of a, the exponent becomes positive and therefore this
off-diagonal contribution adds an increasing function of T .29

29In the T → ∞ limit, one should take into account the fact that Σa itself becomes dominated
by the off-diagonal contribution, see the discussion around Eq. (6.39). Hence the correlation
does saturate when T → ∞, as it should be.
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If we assume instead that Ra(T ) is dominated by informed metaorders, we obtain,
in the regime where µq > 1 + βq, ∀q,

Ra(T )F ∝ ρe−
σ2ℓ a

2

2 ×

{
Tµm/2+aλσ2

ℓ−1, a < ac;

T 0, a > ac.
(6.91)

The scaling with T indicates that Ra(T ) should decrease with T for small values
of a, and become independent of T for large values of a. Note that if volatility
is mostly due to fundamentals and not due to impact, one finds that Ra(T ) is
directly proportional to ρ.30

Hence, we see that the three possible contributions to Ra(T ) have different mono-
tonicity properties as functions of T , suggesting that different shapes of Ra(T )
might be observed empirically. In the following, we will confirm that this is in-
deed the case. The behaviour of Ra(T ) for a given T as a function of a is simpler
to describe. One finds that for a < ac

Ra(T ) = e−
σ2ℓ a

2

2

(
A(T )e

σ2ℓ a

2 +B(T )eλσ
2
ℓa log T

)
, (6.92)

where A,B are functions of T , the second contribution B(T ) coming from the a
dependence of the exponents. Hence we expect a behaviour of Ra(T ) that always
increases for small a, independently of the dominant contribution (diagonal, off-
diagonal or fundamental), but with a slope that increases with T in the last two
cases. These predictions will be tested against empirical data in the next section.

6.5.7 Empirical data
The theoretical analysis laid out in the previous sections makes several non-trivial
predictions:

1. Provided the main source of price moves is the average impact of random
metaorders, the covariance E[∆T · IaT ] behaves as a power-law of T with an
effective exponent that is non-monotonic in a, reaching a minimum for some
value of a, see Eq. (7.5). If volatility is dominated by the random compo-
nent of impact (Eq. (6.71)) with a “Fundamental” component unrelated to
trading, a linear behaviour in T independent of a should be observed;

2. The correlation coefficient Ra(T ) contains an off-diagonal contribution grow-
ing with T and two contributions (diagonal and fundamental) decaying with

30It may be realistic to assume that well informed metaorders are larger, and therefore that
ρ ∝ qψ where ψ ≥ 0. In this case, the scaling with a reads Ra(T )F ∝ eσ

2
ℓa(2ψ−a)/2, which reaches

a maximum for a⋆ = ψ.
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T before saturating. Depending on the relative amplitude of these contribu-
tions, different shapes can be expected;

3. For a given T , the correlation coefficient Ra(T ) is predicted to be a humped
shape function of a.

We will show below that, quite remarkably, all these predictions are in qualitative
agreement with empirical data. This will enable us to estimate the parameters
λ and λ′. We will also see a marked difference between large tick assets like
EUROSTOXX and smaller tick assets (LLOY, TSCO and SPMINI).
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Figure 6.8: Covariance (∆T , I
a
T ) as a function of (T, a) for the four considered assets.

Left: Log-log plot of E[∆T · IaT ] vs. T for different values of a. Right: Scaling
exponents as a function of a, obtained by fitting the initial regime (T < 103).
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Power-law behaviour of the covariance

We first investigate point 1. above. As shown in Fig. 6.8 (left), a power-law
behaviour of E[∆T · IaT ] as a function of T is approximately verified for all a,
albeit with some amount of convexity (for TSCO) or concavity (for LLOY or
EUROSTOXX). When plotted as a function of a, the effective exponent of T
displays the predicted non-monotonic behaviour, see Fig. 6.8 (right), reaching a
minimum for a ≈ 1 for LLOY and TSCO, a ≈ 1.1 for SPMINI and a ≈ 1.5 for
EUROSTOXX. The left slope is predicted to be equal to −λσ2ℓ and the right slope
to +λ′σ2ℓ . For LLOY, TSCO and SPMINI we thus find λσ2ℓ ≈ 0.1 (not far from
the estimate derived from Fig. 6.4) and λ′σ2ℓ ≈ 0.15–0.2. For EUROSTOXX, we
estimate λσ2ℓ ≈ 0.5, a factor 2 larger than from the behaviour of Σa (Fig. 6.4),
but a very small (but positive) value for λ′σ2ℓ .

The value of the effective exponent is in the range 0.95 – 1.35, as expected since
the diagonal contributions give an exponent slightly below 1 (Eq. (7.5)) and the
off-diagonal contribution yield an exponent ≈ 1.2 for the default values of γ× and
β̂(0) (see Eq. (6.85)).

Note that, as mentioned above, a volatility model based on fundamentals only,
leads to a linear behaviour E[∆T · IaT ] ∝ T , independently of the value a, clearly
at odds with Fig. 6.8 (right). For the EUROSTOXX, such a linear regime can
perhaps be observed for a ≳ 1.5, but also compatible with Eq. (7.5) if λ′ is small.

Correlation vs. T and a

Turning to point 2., Fig. 6.9 shows the correlation coefficient Ra(T ) vs. T for
different a in two different representations: standard plot and heatmap. A first
immediate observation is that these correlations are O(1) for all T values, and
peak around 0.45 for stocks and 0.7 for futures. This means that order flow and
returns are indeed strongly correlated, as was emphasized many times (see e.g.
[37, 88, 105, 116, 117]).

We observe that for LLOY and TSCO, Ra(T ) is a mildly decreasing function of
T for small a, which becomes mildly increasing for larger a, as expected from the
discussion in section 6.5.6, assuming that the diagonal contribution dominates for
small a and the off-diagonal contribution kicks in for larger a, or larger values of
T (as indeed suggested by the two upper plots in Fig. 6.9), where an upturn of
Ra(T ) is observed at large T .

For EUROSTOXX and SPMINI, we observe a non-monotonic behaviour of Ra(T )
vs. T for small a, with a maximum reached for rather large values of T . This
suggests that the non-diagonal contribution is dominant for small a, with an ex-
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ponent that is already positive for a = 0, i.e. values of µm and β̂(0) larger than
the default values quoted throughout the Chapter to be compatible with our ad-
mittedly rough theoretical analysis. The qualititative behaviour of both futures
contracts thus appears to be quite different from that of stocks. Note in particular
that the level of the correlation is markedly higher for EUROSTOXX, reaching
a maximum value ≈ 0.75, compared to ≈ 0.45 for stocks (see also Fig. 6.9) and
≈ 0.6 for SPMINI.

Finally, note that the saturation regime where Ra(T ) should become independent
of T , as predicted by either the “diagonal” hypothesis ((6.89)) or the “Fundamen-
tal” hypothesis (Eq. (6.91)), is hardly observable in the data, at least up to 104

trades (roughly one trading day). This observation appears to confirm the pre-
dominant role of impact of mostly uninformed (but correlated) metaorders in the
genesis of volatility [7].
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showing the non monotonic behavior Right column: Heatmap illustrating the
distribution of correlation values within the (a, T ) space, indicating that the correlation

reaches its peaks for a ≈ 0.5− 1, regardless of the T values.128
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Non-monotonic behaviour of Ra vs. a

Finally, for point 3., Fig. 6.10 shows that the correlation between price returns
and generalized order imbalance is non-monotonic as a function of a, reaching
a maximum for a⋆ ≈ 0.5 for LLOY, TSCO and SPMINI, and a⋆ ≈ 1 for EU-
ROSTOXX.

Such a non-monotonic behaviour is predicted by our theoretical analysis. Inter-
estingly, when the diagonal contribution to Ra dominates, we expect that the
maximum correlation is reached precisely for a⋆ = 1/2, with a peak amplitude
that decreases with T , see Eq. (6.89). The data for the two stocks is therefore
compatible with the fact that in the small a regime, Ra(T )d. is a decreasing func-
tion of T . In this regime, one can also predict that

Ra= 1
2
(T )

Ra=0(T )
= eσ

2
ℓ /8, (6.93)

to be compared with the data for which this ratio is ≈ 1.1. The inferred value of
σ2ℓ is thus around 1, comparable to the direct estimate of σ2ℓ from the variance of
log-volumes, see section 6.3.4. The full fit of Ra(T ) vs. a neglecting that the B
term in Eq. (6.89) is given in Fig. 6.10.

For the EUROSTOXX, on the other hand, the maximum is reached for larger
values of a, and the ratio defined in (6.93) is much larger (3 – 5), suggesting that
the B(T ) term in Eq. (7.7) is now dominant, as demonstrated by a fit to the data,
see Fig. 6.10. This is consistent with our remark above – that the off-diagonal
term dominates Ra(T ) for small T . In this scenario, the initial positive slope of
Ra(T ) vs. a should increase with T , in agreement with data. Neglecting A(T ) in
Eq. (6.89) and setting a⋆ = 1, we now obtain

Ra=1(T )

Ra=0(T )
= eσ

2
ℓ (λ log T− 1

2
), (6.94)

which can indeed become large: if we take σ2ℓ = 2 and λσ2ℓ = 1/2, as suggested
above, one finds that for T = 100 the ratio above is ≈ 3.7. For λσ2ℓ = 1/4, that
ratio is ≈ 1.1.
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Figure 6.10: Fit of the correlation function Ra(T ), for several T . Since Eq. (7.7) holds
only for a < ac, we restrict the fit to a < 1.5. The empirical estimates of σℓ obtained

with this fit turn out to be surprisingly close to the ones obtained in Fig. 6.1.

Empirical covariance: conclusion

All empirical data appear to confirm the qualitative validity of our predictions,
some of them being rather non-trivial. One of the main assumptions of our model
is that the exponents describing the autocorrelation of child orders (µq) and the
decay of their impact (βq) depend on the size q of these child orders. This, in turn,
leads to a non-monotonic dependence of the scaling of the covariance E[∆T · IaT ]
with a,31 and of the correlation Ra(T ) with both T and a. Although some of our

31Such a non-monotonic behaviour cannot be explained simply from the power-tail distribution
of volumes q, see G. Maitrier et al., in preparation.
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predictions fail to explain the data quantitatively, we are tempted to ascribe these
discrepancies on the bluntness of our approximations, which, we argue, correctly
capture the mechanisms at play.

Perhaps the two most important conclusions of this section, beyond the success
of our model in capturing the main trends of the covariance data, are:

• Stocks and futures seem to differ quantitatively when it comes to the cor-
relation between order imbalance and price changes. In particular, the cor-
relation between the two is stronger for futures contract, and is reached for
longer time intervals T and with more weight given on large child order vol-
umes (i.e. a⋆ = 1 instead of a⋆ = 1/2). This points towards a stronger role
of metaorder correlations for futures than for stocks.

• The hypothesis according to which most of the volatility comes from funda-
mental information is hard to reconcile with the data. First, as discussed in
section 6.4.5, this assumption does not enable one to understand why the
square-root law, which applies to all metaorders – informed or not [42, 44,
118] – is proportional to volatility. Second, it predicts that the covariance of
price returns and volume imbalances is proportional to T independently of
a, at odds with empirical data. As argued in [7, 33, 104], the most plausible
hypothesis is that volatility stems from trading alone. In other words, the
excess volatility puzzle has a microstructural origin.

6.6 Conclusion
The aim of this Chapter was to reconcile several apparently contradictory observa-
tions: is a square-root law of metaorder impact that decays with time compatible
with the random-walk nature of prices and the linear impact of order imbalances?
Can one entirely explain the volatility of prices as resulting from a “soup” of
indistinguishable, randomly intertwined and uninformed metaorders?

In order to answer these questions, we have introduced a new theoretical frame-
work to describe metaorders with different signs, sizes and durations, possibly
correlated between themselves, which all impact prices as a square-root of volume
(which we assume as an input) but with a subsequent time decay characterized by
an exponent β ̸= 1

2 , i.e. different from the one suggested by the classic propagator
model [7, 31] or the LLOB model [74]. We proposed a generalized propagator
model to account for such a feature.

We then established that the power-law tailed distribution of metaorder durations
is not sufficient to counteract impact decay, leading to price sub-diffusion. Rather,
as in the original propagator model, price diffusion is ensured by the long memory
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of cross-correlations between metaorders, which is indeed present in data. In fact,
we conjecture that the intra- and cross-correlations between child orders decay
roughly in the same manner, a feature that may be crucial for explaining the
success of the construction of synthetic metaorders from public data [3] - Chapter
5.

The existence of correlations between metaorders is therefore a crucial ingredient
to recover price diffusion. The old debate between order splitting and “herding”
that seemed to have been closed by several papers in favor of splitting [16, 119],
is perhaps not so clear-cut. Such correlations could be due either to the fact
that many participants use the same trading signals, or that copy-cat metaorders
follow past order flow, or else that some traders successfully predict the future
behaviour of other participants. Note that within our story any predictive alpha
signal manifests itself through autocorrelated metaorders, since only trades can
move the price (see also the discussion in [7], chapter 20).

In view of the strongly fluctuating volumes q of child orders, one quickly realizes
that one needs to account for heterogeneity in the distribution of metaorder dura-
tions, and in the resulting decay of their impact, which we parametrized by two
q-dependent exponents, µq and βq, assumed to depend linearly on ℓ = log q. In a
nutshell, this is needed to account for the fact that metaorders with large q are less
autocorrelated than those with small q, as shown in Fig. 6.3. This feature allowed
us to account semi-quantitatively for the way the moments of generalized volume
imbalance scale with time T , and more importantly how the correlation between
price changes and generalized volume imbalance scales with T . We predicted that
the corresponding power-law should depend in a non-monotonic fashion on the
parameter a that allows one to put the same weight on all child orders (a = 0)
or overweight large orders (a large), a behaviour clearly borne out by empirical
data, see Fig. 6.8. We also predicted that the correlation between price changes
and volume imbalances should display a maximum as a function of a for fixed
T , which again matches observations, see Fig. 6.10, with fitting parameters fixed
with previously determined values. We found that stocks and futures appear to
differ quite markedly in terms of these metrics, which could provide an interesting
new way to characterize price formation mechanisms in different markets.

Such noteworthy agreement between theory and data suggests that our framework
correctly captures the basic mechanism at the heart of price formation, namely
the average impact of metaorders. We claim that our results strongly support
the “Order-Driven” theory of markets, according to which it is the mechanical
impact of trades, independently of any notion of “fundamental information”, that
generates volatility in financial markets, a picture advocated in [7, 53, 104, 105]
and, in a different context, in [52]. In particular, the Efficient Market Hypothesis,
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which posits that volatility is mostly due to the variation of “fundamental value”,
cannot easily explain our results on the correlations between price changes and
order flow imbalance.

Take Home Messages

• We developed a generalized propagator model in which all metaorders
follow the square-root law, with a decaying impact governed by an
exponent β = 1−γ

2 .
• By introducing metaorder cross-correlations, we showed that such in-

teractions are essential to recover price diffusion, challenging the pre-
vailing focus on order splitting alone.

• Our framework predicts a non-monotonic relationship between price-
volume imbalance correlations and the weighting parameter a, con-
firmed by empirical results.

• We provided strong evidence supporting the "Order-Driven" theory
of markets, where volatility originates from the mechanical impact of
trades rather than fundamental information.
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On alpha prediction and permanent impact

Let me pause here briefly and return to the questions raised in Section 2.5, now
viewed in light of the results obtained so far. As the reader has likely understood,
permanent impact is a crucial concept and yet it remains the subject of ongoing
debate. This is partly because it is extremely difficult to estimate, but also because
it touches on deeper matters of belief and perspective—across both academia and
industry, as I’ve had the chance to witness firsthand.

While the framework developed in this thesis offers what I believe to be a new
interpretation of these questions, I want to emphasize that what follows are more
conjectures than definitive claims. These ideas still require careful empirical vali-
dation.

So far, we have seen that both the volatility and the trending behavior of prices
can be largely explained by trading activity alone, consistent with the so-called
excess volatility puzzle. In this view, price moves because trades are made. But
under our framework, each trade belongs to a metaorder. Suppose now that one
possesses a perfect signal—say, insider information—that a given asset will double
in price tomorrow. For that to happen, it cannot be enough to know this: the
price must be pushed in that direction by executed metaorders.

In this light, alpha is not fundamentally about discovering some deep economic
truth. Rather, it becomes about being able to anticipate how others will trade.
There may well be an economic reason that justifies the price doubling—but if no
one else shares or acts upon that belief, the price will not move.

One might argue that other participants eventually acquire the same information
and follow your lead. In that case, your alpha lies not just in having the infor-
mation, but in acting on it first. Their trades—whether due to direct imitation,
information diffusion —amplify the move you began.

Your profit, then, arises from their impact. They push the price further in your
direction, even after you have finished executing your trade. And just as the
accumulation of correlated market orders with decaying impact can produce a
permanent price shift, the aggregation of correlated metaorders—even if each has
no permanent impact individually —can likewise give rise to an effective perma-
nent impact. This could align with the foundational work of Farmer [120].

In the current literature—see, for instance, the debate between Gabaix et al. [52]
and Bouchaud [53]—permanent market impact is typically modeled as linear. This
has long raised a conceptual issue: how can impact be dynamically concave yet
result in a linear permanent effect?
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Here, I would suggest that this is because the two phenomena are not governed
by very distinct mechanisms. The concavity of dynamical impact, ie the SQL,
is a consequence of microstructural factors—liquidity constraints, as captured for
instance by the latent liquidity theory of Donier et al. [15], to which I strongly
subscribe (though I believe it could still benefit from refinement). By contrast,
permanent impact arises from the autocorrelation of investment decisions at the
level of investors: the persistence of belief, of information, of allocation decisions,
of trading behavior.

I fully acknowledge that this line of reasoning is still in its early stages and needs
further time to mature. I hope to develop it more rigorously in future work.
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Chapter 7

From Abstraction to
Animation:
An Artificial Market Simulator

Nothing is more practical than a good theory.

Ludwig Boltzmann

In the next chapter, we will confirm the ideas from the previous one using nu-
merical simulations of the model, in order to (i) confirm the qualitative validity
of our theoretical analysis, (ii) propose an efficient way to generate an exhaustive
dataset, capturing the subtle interplay between order flows and prices, and (iii)
investigate whether the metaorder proxy introduced in Chapter 5 can be used to
construct synthetic metaorders directly from simulated data.
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7.1 Introduction
Market microstructure —and more specifically, limit order books —constitutes
the microscopic environment in which prices are formed. It can be viewed as
a black box: orders, submitted by various market participants, enter as inputs,
and the resulting output is the observed transaction price. We describe it as a
black box not because it is fundamentally opaque or inaccessible, but because the
interactions that occur within it are governed by a multitude of heterogeneous
agents, operating at different timescales, with diverse objectives and information
sets. These interactions generate a highly nonlinear and noisy environment, mak-
ing it extremely challenging to disentangle cause and effect, or to isolate the fun-
damental mechanisms driving price formation. For these reasons, understanding
the inner workings of this black box —i.e. constructing models that faithfully re-
produce both order flow patterns and price behavior —remains one of the central
challenges in market microstructure research. Indeed, several known stylized facts
about price impact (the famous square-root law), order flow (with its long-memory
properties) and volatility (i.e. that prices are diffusive) appear to be disconnected
and, at least at first sight, hard to accomodate.
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In our previous paper [4], we introduced a theoretical framework that allows one
to reconcile the statistical properties of order flow and price dynamics. Our model
makes detailed and somewhat non-trivial predictions about the cross-correlations
between order flow and price variations that appear to all be borne out by empirical
data on stocks and futures.

In order to derive such predictions, we made several assumptions and simplification
that may appear somewhat strong and uncontrolled [4]. Whereas our theoretical
model is challenging to solve in complete generality, it has the notable advantage
of being straightforward to simulate numerically. The present follow up Chapter
serves a dual purpose. First, it offers additional evidence for the robustness of our
theoretical model by showing that the approximate analytical treatment proposed
in [4] actually correctly describes the key empirical phenomena. Second, we intro-
duce what we believe to be a versatile and realistic simulation tool that captures
the intricate interplay between order flow and price formation.

This latter contribution could be of significant interest to the industry. Generating
realistic market dynamics —encompassing both prices and order flow —remains
a notoriously challenging task. It is fair to say that many existing approaches,
including those based on neural networks, see [98, 121], often fall short of capturing
the full complexity of market behavior. Yet, such generative models are essential
for several practical applications: they enable robust strategy backtesting, and
they provide enhanced fitting capabilities in situations where real financial data is
limited or unavailable. Our framework is based on a direct, mechanistic description
of order flow and price impact that abstracts away from the infinite complexities
of the full order book dynamics, and surely suffers from some short-comings, but
is transparent and computationally trivial. Hybridizing our model with higher
frequency, data driven generative model would be very interesting.

This Chapter is divided in three parts, and contains :

• A detailed framework for generating synthetic data based on our assump-
tions. This synthetic dataset closely resembles the ideal one (similar to the
TSE dataset, for instance) and includes all relevant information about order
flow, metaorder ids, execution time, and impact.

• The reproduction of empirical graphes showed previously, but for simulated
price, using parameters with fitted on real data. In this section, we aim to
reproduce the behavior observed for TSCO by setting ℓ = 6.5 and σℓ = 1 -
empirical values obtained by fitting Ξ on TSCO trades quantities.

• A discussion of the puzzling possibility of reconstructing metaorder proxies
from public data introduced in [3] and Chapter 5 that we confirm within our
artificial market, thereby validating the procedure.
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7.2 A brief reminder of the generalized propagator model

The present study is based on the unified framework proposed in [122] and in the
previous Chapter. To succinctly recall the context, we summarize the model as
follows:

• The order flow is composed of a succession of metaorders, initiated with rate
ν per unit time. The size (i.e., the number of child orders per metaorder)
is distributed according to a power law, Ψq(s), with a q-dependent tail ex-
ponent µq, where q is the size of the child orders, assumed to be constant
within each metaorder. Such child volumes are distributed according to a
lognormal distribution with parameters (m,σℓ). To account for the empir-
ical sign autocorrelations (see Fig. 3 of [122] and Fig. 7.1 below), we set
µq = µ1 + λ log(q).

• We also introduced the possibility of correlating the sign of different metaorders,
starting respectively at time t and t+τ . If εt is the sign of the tth metaorder
of the day, we assume that for τ ≫ 1

E[εtεt+τ ] = Γτ−γ× . (7.1)

• Finally, to understand price formation from order flow, we introduced a
generalized propagator model. This instrument is crafted to incorporate the
three main stylized characteristics of the impact of metaorders (see [2, 7] and
refs therein): (i) impact grows on average as the square-root of the number
of child orders being executed, (ii) average peak impact at the end of the
execution solely depends on the square root of the traded volume, and (iii)
average impact subsequently decays as a slow power-law of time after the
end of execution.

We posited that the impact of a child order of volume q, executed at time t′
on the price at time t > t′, knowing that the metaorder started at t = 0, is
given by

Gq(t
′ → t) =

θ
√
q

(φt′ + n0)1/2−βq

(
τ0

t− t′ + τ0

)βq

, (βq <
1

2
) (7.2)

with θ, n0, τ0 are constants —see section 7.3 for details —and φ the partici-
pation rate of the metaorder. Empirical observations led us to the following
specification βq := β1 − λ′ log(q), meaning that impact decay is slower for
large child orders, as intuitively meaningful.

The entire framework is motivated and explained more thoroughly in [122], and
leads to the following predictions:
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1. The generalized order flow imbalance: We defined the weighted order
flow imbalance, where εt is the sign of child orders:

IaT =

ˆ T

0
dt εtq

a
t , (7.3)

and its moments Σ
(2n)
Ia := E[(IaT )

2n], for which our theory predicts a non-trivial
behavior:

Σ
(2n)
a,1 ∝

{
T 2n+1−µm−2naλσ2

ℓ , a < ac(n);

T, a ≥ ac(n),
(7.4)

with ac(n) = (1− µm/2n)/λσ2ℓ .

2. The time-dependent covariance function: Armed with the order flow
description and the generalized propagator, we describe the interplay between
price returns ∆T and order flow by computing the covariance E[∆T · IaT ]. Our
model tells us that such a quantity should behave as a power-law of T with an
exponent that is a non-monotonic function of a:

Eq[∆T · IaT ] ∝

{
T 5/2−µ̂(a), µ̂(a) = µm + (a+ 1

2)λσ
2
ℓ a < a′c;

T 1−β̂(a), β̂(a) = βm −
(
a+ 1

2

)
λ′σ2ℓ a > a′c,

(7.5)

where µm = µ1 + λm, βm = β1 − λ′m and a′c such that µ̂(a′c) = µq′c , with
5/2− µq′c = 1− βq′c .

3. The correlation coefficient: Finally, our model also allows one to predict
the behavior of the following correlation coefficient:

Ra(T ) :=
E[∆T · IaT ]
ΣTΣIa

, ΣT :=
√

E[∆2
T ], ΣIa :=

√
E[(IaT )

2] (7.6)

The following prediction fits surprisingly well empirical data :

Ra(T ) = e−
σ2ℓ a

2

2

(
A(T )e

σ2ℓ a

2 +B(T )eλσ
2
ℓa log T

)
, (7.7)

for a < ac, and A,B two functions of T . In particular, for a given T , Ra(T ) is
non-monotonic in a and reaches a maximum for a ≈ 1/2 for stocks and a ≈ 1 for
futures.

Although the model is based on only a few assumptions, the theoretical predictions
above are not straightforward, and some uncontrolled approximations needed to
be made. Still, the empirical data we analyzed in [122] agree surprisingly well
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with our predictions. By simulating numerically the very same model, our goal
is to replicate these stylized facts without any analytical approximations, and
demonstrate that we have identified the correct mechanism. This will confirm that
such good fits are not merely coincidental and that uncontrolled approximations
are not, unwittingly, responsible for the success of our theory.

7.3 How to simulate our model?
Whereas generating order imbalances is relatively straightforward, simulating re-
alistic price dynamics is more delicate. In our model, child orders from different
metaorders can in principle be executed simultaneously, which complicates the
price formation process. Furthermore, while the execution of a child order is
clearly a discrete event, its impact decays continuously over time and should be
taken into account at each timestep.

After testing several approaches, we found that using actual timestamps yields
the most transparent and realistic simulations. The simulation procedure is thus
divided into three main steps:

• Generating metaorders: We specify the average number of metaorders
and the total trading period for the simulation (e.g., 10000 metaorders over
an 8-hour trading day). This defines the rate ν at which new metaorders
start. For each metaorder, we define the following parameters: a volume
q, distributed as a log-normal truncated below q = 1, a size s (distributed
according to Ψq), a sign (either randomly assigned or generated with cross-
metaorder correlations), and a starting time, randomly chosen within the
trading day with density ν. We ensure that starting times are unique, as
they will later serve as metaorder identifiers. It is possible to control the
trading rate and liquidity by modifying ν, φ,m, σℓ, as described in section
7.2.

• Deriving the corresponding order flow : The order flow is then
generated by iterating over all time-sorted metaorders. For each one, we
store the execution time of child orders by generating time intervals δt thanks
to a Poisson process: δt ∼ e−φδt. For example, the second child order
is executed at time t = tstart + dt1. This approach allows us to sort all
child orders by their execution time, thereby constructing an order flow
that closely resembles real trade-by-trade data (or more precisely that from
the TSE dataset). Each event (here execution) includes the timestamp,
volume, sign, child order rank, and the time elapsed τ since the start of the
corresponding metaorder. In addition, and specific to our model, we store
the value of βq associated with each metaorder.
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timestamp volume sign rank timestampstart_meta βq

10:32:01.35 10 +1 1 10:32:01.35 0.31
10:32:01.57 150 -1 7 09:15:03.86 0.20
10:32:02.15 80 +1 2 09:34:43.12 0.25
10:32:02.76 120 -1 1 10:32:02.76 0.22
10:32:02.78 90 -1 5 09:47:52.27 0.28

Table 7.1: Simulated order flow data with metaorder decomposition. Each row
represents the execution of a child order, with ’rank’ column indicating the position of
the child order within its metaorder. The ’timestamp(start_meta)’ column records the
start time of the metaorder and also acts as an identifier, as it is uniquely assigned to

each metaorder

• Reconstructing the mid-price: Armed with this simulated order flow
and our generalized propagator, reconstructing the price dynamics becomes
straightforward. We define the price pt as the mid-price just before the
execution occurring at time t. To compute this price, we aggregate the
contributions from all child orders executed prior to t, ie texec < t. We use
the generalized propagator to compute for their respective impacts and sum
them. Although not computationally optimized (with complexity ∼ O(N2)),
this algorithm appears to be the most rigorous. It also preserves a key
property of price impact observed in real markets: most of real market
orders have zero immediate impact (as their volume is smaller than the
prevailing best), but their impact builds up over time (on this point, see e.g.
[2, 7, 31]).

To complement this description, we provide the following pseudo-code :
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Algorithm 3 Simulation of Price Impact from Correlated Metaorders
Require: Number of metaorders N and base parameters γ×, µ1, β1, (m,σℓ), (λ,

λ′)
Ensure: Time series of executed orders with associated impact prices

1: Set ν, the Poisson rate for metaorders initiation and φ the participation rate
within a metaorder.

2: Draw N metaorder start times {tstart
i }Ni=1, with tstart

i+1 − tstart
i ∼ Exp(−νdt)

3: for i = 1 to N do
4: Sample metaorder volume qi ∼ LN(m,σℓ) and size µi = µ(qi, µ1, λ)
5: Compute impact exponent βi = β(qi, β1, λ

′)
6: Sample metaorder sign εi autocorrelated sign time serie, if γ×
7: Sample number of child orders si ∼ Ψqi

8: Generate inter-arrival times {δt(i)k }
si−1
k=1 ∼ Exp(−φδt)

9: Compute execution times t(i)k = tstart
i +

∑k
j=1 δt

(i)
j

10: Store each child order as (t
(i)
k , εi, qi, t

start
i , βi, µi)

11: end for
12: Sort all child orders by execution time {tk}
13: Initialize price impact array pk ← 0
14: for each execution time tk do
15: Identify past orders j < k
16: Apply the generalized propagator:

pk =
∑
j<k

εj ·
√
qj
(
φ(tj − tstart

j ) + n0
)− 1

2
+βj ·

(
τ0

tk − tj + τ0

)βj

17: end for
18: Convert timestamps to realistic time
19: return DataFrame of child orders with {tk, pk, qk, tstart

k , εk, βk}

This simple model relies on only a few parameters that require fine-tuning. To
stay as close as possible to [122], we set m ∈ {3, 6}, σℓ = 1, λσ2ℓ = 1

8 , and λ′ = 2λ.
We also set µm = 1.5, and βm = 0.25. For consistency, we ensure that 0 < βq < 1.

Finally, we fix n0 = 3, based on empirical observations in [2], after verifying that
this parameter has only a mild influence on the rest of the system. The average
time between two child orders, denoted τ0, is theoretically given by τ0 := (νφs̄)−1

[122]. For simplicity, we assume a uniform participation rate φ across metaorders.
By adjusting ν and φ, one can control the average number of concurrently active
metaorders. In the rest of the paper, we will typically impose ν = 1.5 · 10−3 and
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φ = 2 · 10−3.

7.4 Empirical stylized facts vs. simulations

We simulated the system under five different scenarios in order explore the rel-
ative importance of metaorder correlation, child volume fluctuations and the q-
dependence of exponents β and µ. We summarize the different names of these
specifications in Table 7.2.

Name Metaorder Correlation q-Dependence q-Fluctuations
NC-NVD-NVF Γ = 0 λ, λ′ = 0 q ≡ 1

NC-NVD-VF Γ = 0 λ, λ′ = 0 LN(m,σℓ)

NC-VD-VF Γ = 0 λ, λ′ ̸= 0 LN(m,σℓ)

C-NVD-VF Γ > 0 λ, λ′ = 0 LN(m,σℓ)

C-VD-VF Γ > 0 λ, λ′ ̸= 0 LN(m,σℓ)

Table 7.2: Summary of the five simulated configurations. Each model is named using a
triplet notation, with C = correlation (described by parameter Γ), VD = volume

dependence of µq, βq, VF = volume fluctuations. Here, ”N" indicates negation, such as
ND = no metaorder correlation (Γ = 0, see Eq. (7.1)), NVD = no volume dependence

(λ, λ′ = 0), NVF = no volume fluctuations (σℓ = 0). The fully realistic case corresponds
to the last line C-VD-VF.

7.4.1 The q-dependence of the autocorrelation of trades

We begin by examining the relationship between child order volume and their
autocorrelation in the C-VD-VF scenario, which captures all effects we purport
are important. To this end, we partition the simulated rescaled volume q̃ = q/ϕD,
where ϕD denotes the daily traded volume, into four logarithmic bins B. For each
bin, we compute the sign autocorrelation function defined as

CB(q̃)(τ) = E[εB(q̃)(t)εB(q̃)(t+ τ)] ∝ τ−γ(q)

The autocorrelation functions are displayed in Fig. 7.1, in log-log scale, along with
the unconditional autocorrelation function (dotted line). As observed in the data
[122], the effective memory exponent γ(q) systematically increases with volume,
ranging from 0.4 (long memory) to 1.3 (short memory). This graph is strikingly
similar to the one obtained for the EUROSTOXX, see Fig 3. in [122].
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Figure 7.1: Evolution of the sign autocorrelation of market orders based on their
corresponding volume bin B(q). Simulation were done in the C-VD-VF case, with
m = 3, σℓ = 1 and λσ2

ℓ = 1/8. The dotted line corresponds to the unconditional
autocorrelation function. Compare with Fig 3. in [122].

It is straightforward to verify numerically that the q-dependence of µq is indeed
responsible for this phenomenon. If the order flow is simulated without incorpo-
rating this dependence, the stylized fact completely disappears, with γ(q) ≈ 0.5
independently of q (data not shown).

7.4.2 The scaling of the order flow imbalance
We now turn to the scaling behavior of the moments of the generalized order
imbalance Σ

(2n)
Ia , which is one of the main successes of the theoretical framework

introduced in [122]. When q is constant, the dependence on a disappears trivially,
and the imbalance was shown in [122] to follow a truncated Lévy distribution,
entirely driven by the long memory of trade signs, thereby justifying the scaling
Σ2
Ia ∼ T 3−µ with µ = 1.5 for the NC-NVD-NVF simulation. However, by intro-

ducing a q-dependent µq (i.e. when λ > 0), we retrieve scalings that resemble very
closely empirical ones, see Fig. 7.2, both with (C) and without (NC) metaorder
correlations, as expected.

Note that volume fluctuations alone can induce a spurious dependence of the
scaling exponent on a (see NC-NVD-VF in Fig. 7.2) which is due to finite size
effects, for which extreme events are artificially amplified as a increases, with a
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mechanism similar to the Random Energy Model (REM) in spin glass theory [123,
124]. Indeed, we only simulated 100 trading days with approximately 50000 trades
each day such that these finite-size effects are noticeable.
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Figure 7.2: Right column: Scaling behavior of the moments Σ
(2n)
a as a function of

trade time T , from which the scaling exponent is extracted via a log-log regression. Left
column: Scaling exponent plotted as a function of a. As predicted by our model,

increasing a—which gives greater weight to large-volume orders—reduces the scaling
exponent. We set m = 6, σℓ = 1 and λσ2

ℓ = 1/8.
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7.4.3 Recovering a diffusive price

A well known puzzle in the literature is the compatibility of decaying square-root
impact, long-memory of trade signs and the diffusivity of prices —see [7, 31, 33,
101, 125]. Several solutions to this conundrum were proposed in Section 4 of Ref.
[122]. In particular (i) the sign of metaorders themselves should be long-range
correlated, as in Eq. (7.1) and (ii) large child orders tend to have a permanent
impact, i.e. beyond some value called q0 in [122], the decay exponent βq becomes
zero.

These two scenarii are both confirmed by numerical simulations: we indeed find
that the generalized propagator model leads to a sub-diffusive price in the ab-
sence of metaorder correlations (Γ = 0) and without volume effects. Introducing
metaorder autocorrelations with the correct exponent γ× or incorporating a vol-
ume dependence βq restores price diffusivity at long times. By correctly tuning Γ
and λ′, one can control the full signature plot and not only the long time diffusive
behaviour, and reproduce empirical results that show a variety of possibly short
time behaviour, from locally trending to locally mean-reverting —although tick
size effects, not modeled here, are expected to play an important role at short
times.
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Figure 7.3: Signature plot Σ2/τ of the simulated price as a function of the trade lag τ .
Diffusion corresponds to a flat, horizontal signature plot. The generalized propagator

model NC-NVD-VF (blue curve) results in sub diffusive behavior, as expected, while the
two other impact models exhibit diffusive behavior after an initial trending phase

(C-NVD-VF, green line) or mean-reverting phase (NC-VD-VF, orange line). Simulations
were conducted for Γ = 0.1 in the C-NVD-VF case, and λ = λ′ = 1/6 for the NC-VD-VF

case. In both cases, we used φ = 2 · 10−3, µm = 1.5,m = 3 and σ2
ℓ = 1

As in [122], we can also investigate 2n-moments of price changes, and check that
all moments scale asymptotically as Tn, as for empirical data, see Fig. 7.4. We
insist again that we work here in trade time, so that multifractal effects due to
intermittent activity bursts, are not present.
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Figure 7.4: Scaling of the moments of price changes |∆T |2n as a function of trade time
T . We normalized the moment values such that all curves begin at 1 for T = 1. To

account for short term, we fitted the data as Σ(2n) = a0 + a1T
ζn and present the values

of ζn in the legend.

7.4.4 Aggregated impact and anomalous rescaling

Aggregated impact is a very natural observable to investigate, but it also turns
out to be highly non trivial. It is defined as the conditional expectation E[∆|Ia]
of price change ∆ given an imbalance Ia, is a natural and empirically accessible
observable [37, 115]. However, it exhibits non-trivial behavior that departs from
the standard square-root law, with scaling properties that vary significantly with
the time horizon T .

In particular, for a = 0, the initial slope of E[∆|I0] scales as T−ω with ω ≈ 1/4, a
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result documented in [7, 37]. While a Gaussian assumption would suggest a linear
relation

E[∆|Ia] = E[∆ · Ia]
Σ2
Ia

Ia, (7.8)

such an approximation has a priori no reason to hold within in our setting, where
Ia is a truncated Lévy variable. Despite this, Eq. (7.8) still captures the correct
T -scaling.

We now revisit this observable using simulations based on our model and confirm
that the anomalous rescaling ∼ T−ω is precisely recovered, validating the theo-
retical prediction. However, Fig. 7.5 shows that the concavity seen in empirical
curves for large imbalances is absent in our simulations. As demonstrated in Ref.
[37], such a concavity is due to a selection bias, not described in our model: large
orders tend to be executed when large limit orders are available on the other side,
limiting the impact of these market orders.
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Figure 7.5: Aggregated impact as a function of sign imbalance for C-ND-V simulations.
As in real market data, curves corresponding to different values of T collapse onto a

single master curve after appropriate rescaling. We find a scaling exponent χ = 0.75, in
close agreement with the theoretical prediction 1/µ, as we simulated with µ = 1.5. The

slope exponent ω = 0.25 is also consistent with empirical observations.

7.4.5 The covariance coefficient
We now focus on the covariance coefficient. Our theoretical predictions suggest
that the non-monotonic shape as a function of a originates from volume fluctua-
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tions —particularly in the upward branch, which depends on the parameter λ′ in
the relation β(q) = β1 − λ′q (see Eq. (7.5)). We clearly confirm this phenomenon
in Fig. 7.7, case C-VD-VF. Some aspects still require further investigation, in
particular why the NC-VD-VF configuration exhibits a monotonically increasing
pattern, when Eq. (7.5) predicts no dependence on metaorder correlations. Never-
theless, we believe that the difference between C-NVD-VF (or NC-NVD-VF) and
C-VD-VF supports and reinforces our claim that volume fluctuations coupled to
volume dependence of the impact decay is key to account for such a non monotonic
behaviour.
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a
T ) as a function of (T, a) for simulated markets, with

m = 3, σℓ = 1, λσ2
ℓ = 1/8 and λ′ = λ, for the four configurations considered here. From

top to bottom NC-NVD-VF, NC-VD-VF, C-NVD-VF and C-VD-VF. Left: Log-log plot
of E[∆T · IaT ] vs. T for different values of a. Right: Scaling exponents as a function of a,

obtained by fitting the initial regime (T < 103).
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7.4.6 The correlation coefficient

Finally, an important quantity is the correlation coefficient Ra(T ), for which our
theoretical model also predicts a non-trivial behavior for fixed T as a function
of a. Once again, the resulting curves show quite a remarkable agreement with
empirical data, as illustrated in Fig. 7.7. Moreover, by fitting Eq. (7.7) to the
simulated data, we can extract the values of σℓ and λ, which are very close to the
parameters originally used in the simulation, see Fig. 7.8.

By fitting Ra(T ) as a function of a for specific values of T , one can assess which
term —A or B —is dominant, see Eq. (7.7). This is done by successively fitting
only one term at a time, i.e., either setting B = 0 and fitting A, or setting
A = 0 and fitting B. Our theoretical framework also predicts which term should
dominate depending on whether λ ̸= 0.

Not only does the model show good qualitative agreement with the data, but the
fits presented in Fig. 7.8 are also remarkably convincing from a quantitative point
of view. In particular, we observe a clear match between:

• the NVD case and fits using only the A-term (with negligible B),

• the VD case and fits where B dominates (with A negligible).

Moreover, the fits yield realistic estimates for both the input values of σℓ and λ,
further validating the consistency of the model.
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indicate which term of Eq. (7.7) is being fitted. The empirical estimates of σℓ and λ
obtained through this procedure are remarkably close to the values used as input in the

simulations: σ2
ℓ = 1, λ = 1/8.

7.5 The puzzling effectiveness of proxy metaorders
In this final section, we address a central puzzle in the study of price impact:
the surprising effectiveness of “proxy metaorders” introduced in [3]. Our algo-
rithm constructs synthetic metaorders while preserving the exact trade history
and sampling trades without replacement, two conditions that turn out to be es-
sential. This algorithm originates from a study of metaorder impact using the
TSE dataset, which includes real trading identifiers. A striking initial finding was
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that randomly shuffling trading IDs and reconstructing synthetic metaorders still
preserves the square-root impact law (SQL): see [2] section 4.2 for details.

However, one might argue that obtaining such a result relies on the prior knowledge
of the original trading IDs. The shuffling process may preserve hidden information
—such as the distribution of trading frequencies —which could, in turn, explain
the impact function observed for the synthetic metaorders. Although appealing
and somehow intuitive, this hypothesis was refuted in [3] through the construction
of synthetic metaorders using public data. Yet the justification of the success of
that method in reproducing the SQL remained somewhat mysterious.

The framework we introduce here allows one to justify further our proposal using
purely simulated data. Although we have not yet been able to compute exactly
the impact of proxy metaorders within our model, we believe that our numerical
results are convincing enough to believe that the procedure proposed in Ref. [3]
is warranted.

In Section 7.3, we introduced a detailed procedure for generating a dataset that
closely approximates the ideal case (such as the TSE dataset), which provides
trade-by-trade data along with metaorder identifiers across the entire market.
Building on this, we conduct a numerical experiment where we pretend we do
not know the mapping between trades and metaorders, and construct a proxy in
the spirit of [3]. For the purpose of such an experiment, we assume no volume
dependence, i.e, λ = λ′ = 032. Each metaorder can thus be characterized by only
three parameters: its size s drawn from a distribution Ψ(s) ∼ s−1−µ, its execution
rate which we choose to be the same for all metaorders φ̃ = φ and its average
child order volume q, with q ∼ LN(m,σ2ℓ ).

The core challenge in designing a reliable proxy for metaorders lies in aggregating
market orders in a way that statistically approximates the true (yet usually unob-
servable) matching between traders and trades. A natural method to reconstruct
realistic metaorders from the observed order flow is to first separate buy and sell
orders and then, for each list, iterate through the orders while performing the fol-
lowing: if an order is already part of an existing metaorder, we skip it; otherwise,
we draw a size s ∼ ψ(s) and group the next s orders that occur within intervals of
duration φ into a new metaorder. Since splitting and grouping orders can bring
together orders with the same sign that were actually executed far apart in time,
we introduce an inter-time threshold between two child orders. If the inter-time
is above the threshold, we consider that the two child orders belong to different
metaorders. This inter-time constraint proves essential for reproducing the SQL,

32The proposed study and code can be readily extended to scenarios where (λ, λ′) ̸= (0, 0)
and q ∼ LN(m,σq) by separating buy and sell orders, binning the volume q, and applying the
algorithm using the corresponding value of µq.
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and corresponds to usual execution schemes where child orders tend to be rela-
tively close to one another. A long pause in the execution schedule is tantamount
to starting a new metaorder.

This procedure is summarized in Algorithm 4, where C is a constant, which we
arbitrarily set to 4φ, as it provides satisfactory results, see Fig. 7.9, where we
compare the numerical evaluation of the square-root law using the known exact
matching between child orders and metaorders generated by our simulation (blue
line) and the impact law estimated using proxy (or synthetic) metaorders (orange
line). One sees that the agreement is almost perfect when Q/VD is not too small,
whereas the effective behaviour of the reconstructed impact becomes more linear.
This is expected, since the start of short proxy metaorders have a higher probabil-
ity to miss the start of “real” metaorders, for which the impact is most concave.
We also confirm that the derivation of the prefactor Y of the SQL in [122] is
correct, namely I(Q) = Y σ

√
Q/VD. We believe that this additional quantitative

validation is important, since the prefactor is usually less studied in the literature,
although it remains of significant interest for the estimate of actual impact costs.

These simulation results therefore bolster the claim made in [3] that a realistic
estimate of the impact of metaorders can be obtained using anonymous trade by
trade data, provided the mapping function that generates proxy metaorders is
chosen adequately. In fact as shown in [3] (Appendix), this mapping function,
based on the theoretical framework developed here, also performs well on real
data.
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Algorithm 4 Generate Metaorder Identifiers with Time Threshold
1: function GenerateMetaIDs(t_execs, φ, µ, smax)
2: n← len(t_execs)
3: ids← zeros(n, dtype=int)
4: id_meta← 1
5: i← 0
6: while i < n do
7: size← Ψ(µ, smax)
8: count← 0
9: current_time← t_execs[i]

10: while count < size and i < n do
11: ids[i]← id_meta
12: count← count+ 1
13: next_time← current_time+ Exp(φ)
14: i_next← searchsorted(t_execs, next_time, left)
15: if i_next ≥ n or (t_execs[i_next]− next_time) > C/φ then
16: break
17: end if
18: i← i_next
19: current_time← t_execs[i]
20: end while
21: id_meta← id_meta+ 1
22: while i < n and ids[i] ̸= 0 do
23: i← i+ 1
24: end while
25: end while
26: return ids
27: end function
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Figure 7.9: Comparison of the impact of simulated metaorders in the C-NVD-VF
setup and synthetic metaorders generated using the metaorder proxy and constructed

from simulated prices. For small Q/VD, synthetic metaorders tend to have less concave,
but after a crossover value around 10−3, it nicely converges to the expected SQL, which
is an input of our simulation. Note that we also recover the exact theoretical prefactor
Ytheory computed in [122]. Both the simulation algorithm and the mapping function use
φ = 2. 10−3, µ = 1.5, m = 3 and σ2

ℓ = 1. A total of 1,000,000 simulated metaorders were
generated. We obtain similar results in others simulations cases

A crucial aspect of price impact lies in the decay post execution, which remains the
subject of active debate within the community. We verify that the post-execution
dynamics of synthetic metaorders closely match those of simulated metaorders.
Since analyzing post-execution impact is subtle [44], we check here that the
method produces realistic outputs. A more refined investigation, both theoret-
ical and empirical, is left for future work. Nevertheless, we confirm that the decay
is consistent with propagator theory, i.e. a power-law decay t−β with β ∈ [0.1, 0.5]

7.5.1 How the acceptance window drives mapping accuracy

Let’s try to explain more theoretically why this mapping function works that well,
and what is the role of the cutoff. In simulations, each metaorder i is generated
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as a Poisson process with intensity φ:

X
(i)
k ∼ Exp(φ), t

(i)
j = t

(i)
1 +

j−1∑
k=1

X
(i)
k .

The propagator kernel depends on offsets

∆tj = tj − t1,

and the SQL holds then by construction.

In the reconstruction setting, we observe only the split order flow—i.e., individual
buy or sell orders—which results from the superposition of multiple metaorders
executed simultaneously. After observing a child at time t, the next candidate can
come from:

• the same metaorder, after a gap ∼ Exp(φ),

• from the rest of the split flow

We denote by m the number of active metaorders of same sign. We readily obtain
m = ν E[s]

2φ - up to a correction factor when metaorder signs are autocorrelated.
With it comes the rate of execution of the split order flow (say buy orders here) :
λ+ = ν E[s]

2

Let us assume that we accept the next order if it occurs within a window w.
Conditioning on at least one event in [0, w], the probability that this event is from
the same metaorder is:

Ptrue(w) =
φ(1− e−φw)

φ(1− e−φw) + λ+(1− e−λ+w)
(7.9)

As w → ∞, Ptrue(w) → φ
φ+λ+ = 1

1+m . Thus, in the regime of low density m ≪ 1

(ie a small number of metaorder is active at the same time), this mapping function
allows one to reconstruct the real simulated metaorder.

Unfortunately, in real financial markets as in our simulation, m is typically larger
than 1, as different investors execute their metaorder simultaneously. Thus, it is
highly probable that synthetic metaorders integrate also child orders from other
metaorders. Then, the generalized propagator for synthetic metaorders reads :

I(Q̂) = q
ŝ∑

j=1

(
tj − t1(tj)

φ
+ n0)

−(1/2−β)

(
τ0

tQ̂ − tj + τ0

)−β

(7.10)
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where t1(tj) is the starting time of the simulated metaorder to which the child
order executed at tj belongs. As expected, the decay part is not impacted by
the reconstruction principle, but a distortion of the SQL could arise from the
mismatching t1(tj)!= t1, as we aggregated child orders that may not come from
metaorders initiated at the same time. Luckily, fine-tuning the threshold C has
two main effects:

First, in (7.9), it increase the probability of selecting the correct next child or-
der, and more importantly, it prevent ∆j = tj − t1(tj) to be too large. Indeed,
even when linkage is correct, large gaps inside a metaorder distort impact. For s
children drawn i.i.d. from Exp(φ):

E[ max
1≤i≤s−1

Xi] ∼
log s

φ
,

which grows unboundedly with s. These large offsets inflate the kernel argument(∆tj
φ

+ n0

)−( 1
2
−β)

,

causing the last trades to contribute almost zero impact, breaking SQL at the
metaorder level. Imposing a maximum gap Xi < C/φ ensures that ∆tj remain
within realistic values. Even if some reconstructed children are slightly misaligned
with respect to their true metaorder start, compensation effects occur when av-
eraging over a large number of metaorders. This self-averaging restores then the
SQL observed in Fig. 7.9.

To fully comprehend this phenomenon, a more extended mathematical derivation
is necessary.

7.6 Conclusion
This work extends and complements our previous theoretical paper on the subtle
interplay between impact, order flow and volatility [122]. In that work, most of
our predictions turned out to be in rather remarkable agreement with empirical
observations, despite the simplifying mathematical approximations that we had
to make. In the present paper, we show using numerical simulations that these ap-
proximations are actually quantitatively justified, which provides further support
for the validity of our theoretical framework, and bolsters our conclusion that price
volatility can be fully explained by the superposition of correlated metaorders that
all impact prices, on average, as a square-root of executed volume. One of the
most striking predictions of our model is the structure of the correlation between
generalized order flow and returns, which is observed empirically and reproduced
using our synthetic market generator.
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Furthermore, we were able to construct proxy metaorders from simulated order
flow that reproduce the square-root law of market impact —a law that has long
been, and in some circles still is, attributed to information revelation; see e.g. [30,
71, 94]. Our model, on the other hand, makes the assumption that impact is
purely mechanical and a result of the random dynamics of latent liquidity that
creates a buffer for price moves, see [7, 74, 90]. The possibility of measuring the
impact of metaorders from tape data (i.e. anonymized trades) was long thought
to be impossible. However, Ref. [3] showed that a suitable mapping between
market orders and proxy metaorders allows one to reconstruct many statistical
features of real metaorders. We confirm that this is indeed the case within our
purely synthetic market as well, lending further credence to our proposal [3].

Take Home Message

• We present an algorithm designed to create artificial markets in line
with the theoretical framework established in the previous chapter.

• Our results successfully replicate the complex stylized facts empha-
sized by the theory, demonstrating a strong alignment between data,
theory, and simulation and thus reinforcing the robustness of this
framework.

• Building on our framework, we propose a more intuitive mapping func-
tion compared to the one introduced in Chapter 5. This advancement
enables us to generate realistic metaorders on a simulated price.
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Chapter 8

Microstructure modes in the
Limit Order Book:
Signature of Marginal
Instability

Tout doit tendre au bon sens: mais, pour y parvenir,
Le chemin est glissant et pénible à tenir;

Pour peu qu’on s’en écarte, aussitôt l’on se noie.
La raison pour marcher n’a souvent qu’une voie.

Nicolas Boileau, L’Art poétique, Chant I (1674)

While prices are ultimately the outcome of supply and demand interactions, the
high-frequency nature of order book activity makes it difficult to disentangle
meaningful patterns from noise. In this chapter, we investigate the joint dy-
namics of order flow and price movements using an order-by-order dataset from
the HF_EUROSTOXX. We introduce a coarse-graining method that reveals sta-
tistically meaningful patterns at the minute scale. Using Principal Component
Analysis, we extract dominant “microstructure modes”that decompose market
activity into symmetric and anti-symmetric components. We then calibrate a Vec-
tor Auto-Regressive (VAR) model to describe the dynamics of these modes, finding
remarkably stable parameters and strong predictive power for symmetric liquidity
patterns. As the number of lags increases, the model approaches marginal insta-
bility, echoing the persistent memory of order flow and hinting at the endogenous
nature of liquidity crises.
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8.1 Introduction
The micro-dynamics of asset prices is intricate, resulting from a subtle interplay
between market orders, limit orders and cancellations happening at an amazingly
fast pace in modern electronic order books. The mathematical description of
the succession of these different events, the volume in the order book, and the
occasional price changes when the queue at the best bid or ask empties out, is
extremely difficult. This is due both to the high dimensionality of the problem, and
to the presence of long-range correlations in the sign of the market/limit orders,
which makes it necessary to have strong enough feedback loops. For instance, Zero
Intelligence models [126, 127], where agents make decisions without any strategic
reasoning or foresight, fail for exactly this reason at creating coherent sequences
in time.

One possible avenue, which has led to interesting results recently, is to train gener-
ative neural networks on large datasets [97, 98], interpreting each event as a word
and trying to guess the series of event following a given word history. Learning
the underlying statistical structure of the order book dynamics would allow one
to generate realistic synthetic limit order books. This would in turn offer valuable
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opportunities to enhance market making strategies, or its dual problem: optimal
execution. It would also allow one to simulate the counter-factual impact of addi-
tional orders, that are not present in the public tape, by understanding how the
market digests such orders [88]. Indeed, inferring the impact of – say – market
orders based only on the public tape is marred with conditioning problems.

Although some success of using the analogue of Large Language Models was re-
ported [97, 128, 129], the prediction horizon for the order book dynamics appears
to be limited to a few tens of events. But since such events happen at extremely
high frequencies, the time horizon of these predictions is shorter that one second
for electronic liquid markets, during which the price itself seldom changes. Al-
though possibly useful for High Frequency Trading [97, 130], one would like to
develop tools that account for the joint dynamics of prices and order flows on
somewhat longer time scales, say minutes.

One of the main problems faced by “complete” models where all events are taken
into account is that the high frequency dynamics of order books contains what one
would like to call “jitter”, i.e. orders that are placed and immediately cancelled,
providing little information on the longer term fate of the order book. Another
source of “jitter” are market orders that empty a queue at the best only to be
immediately refilled by limit orders, creating high-frequency mid-point bounces.

Our main idea in this Chapter is to coarse-grain and simplify the dynamics in
such a way that only “significant” price changes (more precisely defined below)
are retained. The flow of market orders, limit orders and cancellations, both at
the bid and at the ask, are aggregated between two price changes and used as
the relevant dynamical variables we want to focus on and predict, together with
the time elapsed between two price changes and the corresponding return itself.
These variables define an 8-dimensional space on which we project, in a sense, the
full joint dynamics of prices and order flow.

We then perform a Principal Component Analysis of the fluctuations, which de-
fines “liquidity modes” that turn out to be stable in time and have a clean interpre-
tation of market dynamics. This allows us to define a VAR model for predicting
such modes one lag ahead, with a very significant R2 score.

One of our key findings is that one should actually distinguish between two natural
coarse-graining procedures. The first one is to exclude price changes that are
immediately reverted, and define other price changes as significant. However, we
still see very strong mean-reversion (or “bounce”) effects for the resulting price
changes, that we call “raw” henceforth. We therefore define a second coarse-
graining scale by aggregating N successive raw price changes, constructing what
we will call “binned” returns, choosing N in such a way that the autocorrelation
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of successive binned returns is below 0.01. On longer time scales, the series of
price returns is thus closer to white noise, such that mechanical microstructure
effects are smoothed out. For such binned data, our VAR model predicts flows
with a substantial R2 score (∼ 25%) whereas, not unexpectedly, the prediction for
returns is smaller but still significant, both in-sample and out-of-sample.

Both the “raw” scale and the “binned” scale are important for applications, but
for different end users. The raw scale is presumably most useful for market makers
and HFT, whereas the binned time scale is relevant for optimal execution and even,
possibly, fast alpha signals. Our reduced model allows us to generate realistic time
series of price changes and order flow. It also allows us to detect regime changes,
when residuals with respect to the VAR model become anomalously high.

Interestingly, when our VAR model is extended to multi-lags, we detect clear signs
related to known long memory effects, i.e. several activity directions correspond to
eigenvalues tending to one and become marginally stable under the dynamics. A
similar effect is known to occur when one fits linear Hawkes processes to financial
data [59]: the only way to capture long memory is to bring the model close to
instability [60, 131]. If taken at face value, the marginally stable eigenvectors of
our VAR model would suggest incipient liquidity crises, a scenario advocated in
various contexts, see e.g. [55, 64, 132–134]. An alternative interpretation of such
marginal stability is the effect of changing activity levels across different periods,
which is in a sense another manifestation of the long range correlations of the
flows.

Finally, we can also use our model to simulate the impact of additional flows and
see how far we can recover the various stylized facts reported in the literature, i.e.
impact concavity and relaxation of impact after the trade is completed.

The outline of the Chapter is as follows. Section 8.2 introduces the variable of
interest in our modeling. It describes the dataset, and the chosen pre-processing
of the data. Section 8.3 suggests an analysis of microstructure modes based on
Principal Component Analysis (PCA) of our data. In Section 8.4, we present the
VAR model applied to our data, with an analysis of the stability of the resulting
dynamics. Measures of the price impact under our model can be found in Section
8.5, and we conclude in Section 8.6.

8.2 Data presentation

The dataset used in this study consists of 545 days of the futures contract on EU-
ROSTOXX from September 2016 to August 2019. The original data was obtained
at the tick level, capturing detailed information about each price change. During
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the analysis period, just under 4 million price changes were observed, with on
average 7264 price changes per day.

It is noteworthy that EUROSTOXX is a liquid large-tick asset, with a spread
almost always equal to one tick. This feature puts strong constraints on possible
price changes: very often the mid-point mechanically bounces back because one of
the best queues is immediately refilled after its depletion. Considering that these
price changes represent microstructure noise, we filtered them out of the data and
retained only “significant” price changes, defined as follows:

A significant price change corresponds to cases when the new bid corresponds to
the old ask, or when the new ask corresponds to the old bid.

In other words, most spread-opening events correspond to a mid-point change of
half a tick. If the following spread-closing event corresponds to another half-tick
move in the same direction, we consider the price change to be significant. This
definition allows us to remove some of the “jitter” that we deem insignificant
in the dynamics that we want to capture, and to reduce the dimensionality of
the problem by focusing on the total flux of orders between two successive price
changes.

8.2.1 Variables of interest and intraday profile

For the nth significant price change of the day, occurring at time tn, we define the
following variables:

∆tn = tn − tn−1 : Time duration between the (n− 1)th and nth price changes
V ex, a
n , V ex, b

n : Volume executed at the ask and bid, respectively, between tn−1 and tn

V lo, a
n , V lo, b

n : Volume posted to the first levels of the LOB at the bid and the ask, respectively
V c, a
n , V c, b

n : Volume cancelled at the first levels of the LOB at the bid and the ask, respectively
rn : The return generated by the price change

All variables except returns are, by definition, positive. Returns can take positive
and negative values, and are equal to ±1 tick in most cases. For later use, we
stack these 8 variables into the following 8-dimensional dynamical vector

Xn =
(
∆tn, V

lo, b
n , V lo, a

n , V c, b
n , V c, a

n , V ex, b
n , V ex, a

n , rn

)
(8.1)

A consequence of focusing on "significant" price changes is that when the prices
move up (twice, to be deemed significant), the first inserted volume at the new,
higher bid is counted in V lo, b

n whereas the pre-existing volume at the new ask is
not - and equivalently, when the prices moves down. In other words: queues that
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move from a second-best to a best position are not considered as new placement
flows.

Fig. 8.1 depicts the normalized average shape of the bid volume variables V ⋆, b
n

throughout the day, binned in 1-minute intervals. The observed peak around 15:00
coincides with the opening of the US market. Since our modelling approach does
not incorporate intraday volume patterns, all volumes are scaled by a smoothed
average profile, fitted using two distinct exponential decay functions A exp(−t/τ)+
B with 3 parameters each: amplitude (A), on the decay time constant (τ), and
baseline (B), see table 8.1.
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Figure 8.1: Normalized intraday profile of LOB placement and trade flows from the
futures on EUROSTOXX data. The cancellation flows have similar profiles as the

placement flows and are not presented in the figure for clarity. The activity level is high
at the beginning of the day and decreases until a surge of activity at the open of the U.S.
market. The intraday profile is the same for all activity flows and we characterize it by a

unique set of parameters given in table 8.1.
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Table 8.1: Exponential decay fit parameters for the average of the 6 normalized
intraday flow profiles.

Parameter Before 15:30 After 15:30

Amplitude (A) 2.20± 0.14 1.95± 0.42

Decay Time (τ) 50.0± 5.7 minutes 6.85± 2.4 minutes
Baseline (B) 1.79± 0.04 3.95± 0.07

8.2.2 A second coarse-graining

Even after filtering out price changes deemed not significant, the returns rn still
show very strong anti-correlations. Fig. 8.2 shows that the empirical correlation
function Cr(ℓ) := ⟨rnrn+ℓ⟩ can be approximated as

Cr(ℓ) ≈ (−γ)ℓ; (γ ≈ 0.8 < 1). (8.2)

These correlations only become small (< 0.01) beyond lag ℓ = 20. To wit, strong
microstructure effects still affect our “significant” price changes: the mid-price
only becomes approximately diffusive for lags ≳ 20.

In view of these persistent anti-correlations, we have introduced a second coarse-
graining scale by further binning consecutive significant price changes into groups
of 20. Throughout this Chapter, we will refer to our initial definition of significant
price changes as “raw” and the aggregated (in batches of 20) price changes as
“binned”. Due to the very short time scales of the Raw Price Change data, one
observes very many null flows V ⋆, a

n or V ⋆, b
n between tn and tn+1, an effect that

completely disappears when the data is binned.
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Figure 8.2: Absolute value of autocorrelation of returns. The alternation of positive
and negative values in the autocorrelation indicates bounces in the return, which

essentially disappear after binning 20 successive price changes.

8.2.3 Box-Cox transformation
Because of the strongly non-Gaussian nature of the variables Vn and ∆tn, even
after binning, we start by applying a “Box-Cox” transformation f(x;λ) to the
binned variables, with

f(x;λ) :=

{
(ax)λ−1

λ , if λ ̸= 0

log(ax), if λ = 0
. (8.3)

and a parameter λ possibly different for the volume variables λv (for chosen to be
the same for all such variables) and λt for the time variable. These parameters are
chosen to maximise the likelihood of the Gaussian distribution of the transformed
variables, which yields λv = 0.20 and λt = 0.14. The scale parameter a can be set
to unity without loss of generality.

We will henceforth work with a series of 8-dimensional vectors Tn defined as:

Tn =
(
f (∆tn;λ∆t) , f

(
V lo, b
n ;λf

)
, f
(
V lo, a
n ;λf

)
, f
(
V c, b
n ;λf

)
,

f (V c, a
n ;λf ) , f

(
V ex, b
n ;λf

)
, f (V ex, a

n ;λf ) , rn

)
.

(8.4)

We further normalize the Binned Price Change data using a moving window span-
ning the days preceding the day of interest. Let w be the width of the time window
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used for the computation of the means and the scales of the variables, with w = 20.
Let d be a day in the data set, and Nk the number of observed price changes in
day k. We write Td

n to indicate that the vector is observed at day d and define a
causal local mean and the scale as follows:

µdj =
1

w

d−1∑
k=d−w

1

Nk

Nk∑
n=1

(Tk
n)j , j = 1, 2, . . . , 8, (8.5)

(σdj )
2 =

1

w

d−1∑
k=d−w

1

Nk

Nk∑
n=1

(
(Tk

n)j − µkj
)2
, j = 1, 2, . . . , 8, (8.6)

with which we normalize each component of the Tn vectors as:

T ′d
n =

T d
n − µd

σd
. (8.7)

8.3 Microstructure modes
As expected intuitively, the volume Vn and time ∆tn variables are strongly corre-
lated. For example, a large flux of market orders might trigger more limit orders
and vice-versa. It is thus natural to use a Principal Component Analysis (PCA) to
understand the structure of these (same bin) correlations, and define a set of un-
correlated principal components. These vectors, ordered by their associated eigen-
values, represent the dominant microstructure modes of the market. It turns out
that all these modes exhibit near-perfect bid-ask symmetry (or anti-symmetry),
especially when computed using a large number of days. Since there is no reason
for this symmetry to be broken at high frequencies, we manually removed all re-
maining spurious bid-ask asymmetry in the results presented below. Note that
the PCA analysis is always performed on the Box-Cox transformed variables T ′

n,
with the averaging window w chosen to be 20 days.

8.3.1 PCA Analysis I: Raw data
The eigenvectors decomposition of the raw data is given in Fig. 8.3, the corre-
sponding eigenvalues λα ranging from λ1 = 4.07 to λ8 = 0.02, with

∑8
α=1 λα = 8

from the normalisation of the covariance.

Each eigenmode Uα has a rather intuitive and transparent interpretation, on
which we comment below. Three of them are bid/ask symmetric, four are bid/ask
anti-symmetric and the last one only contains duration, which appears to be inde-
pendent variable at such high frequencies. Note that the sign of these eigenvectors
is arbitrary; each direction is equally explored by the dynamics, with an intensity
given by the square root of the corresponding eigenvalue.
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• Mode 1 only contains volumes, with all coefficients positive. This represents
an increase (or decrease) of general activity in the order book, with more
(or less) market orders, limit orders and cancellations. It represents 51 % of
the total variance.

• Mode 2 mixes market order imbalance with the contemporaneous return.
As expected, more executions at the ask lead to a positive return and vice
versa.

• Mode 3 is a pure duration mode.

• Mode 4 is bid/ask symmetric and describes situations where the aggressive
flow becomes more active, whereas the passive flows (limit orders, cancella-
tions) slows down – or vice-versa.

• Mode 5 is anti-symmetric: more market orders at the ask than at the bid
(and slightly less limit orders at the ask than at the bid), but resulting to a
negative return, opposite to Mode 2. This counter-intuitive result is in this
case due to the initial imbalance in the size of the queues. With the sign
convention here, the bid side is less populated than the ask side, indicating
net sell pressure overall. Still, higher liquidity at the ask attracts more buy
market orders, explaining the excess of market orders at the ask.

• Mode 6, 7 and 8 are liquidity modes, since market order activity is absent
from these directions. These modes represent 6.25 % of the total variance.
Mode 6 and 7 and bid/ask anti-symmetric, and Mode 8 is symmetric. Mode
7 corresponds to a growing imbalance of the available liquidity at the bid
and at the ask, since we see more limit orders and less cancellations at the
ask and less limit orders and more cancellations at the bid (or vice-versa).
Mode 8 has a very small intensity, and corresponds to a simultaneous loss
(or increase) of liquidity on both sides of the book.
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Figure 8.3: Normalized eigenvectors Uα of the PCA decomposition (Raw data). For
clarity purposes, the amplitudes lower than 0.15 (corresponding to weights less than
0.152 ≈ 2%) have been set to zero. The directions should be interpreted as Box-Cox

transforms of the original directions (except return r).

8.3.2 PCA Analysis II: Binned data

We now conduct exactly the same PCA analysis but now for binned data, aggre-
gating volume flows and returns across 20 successive price changes. The emerging
eigenmodes have very much the same structure as for the raw data: the PCA yield
two categories of modes, one capturing symmetric activity between the bid and
ask, and the other anti-symmetric activity and non-zero price changes.

Mode 1 again correspond to a global rise (or decline) of activity and mode 2 to
a market order imbalance leading to a price change in the same direction as the
imbalance. The total weight of these two modes λ1 + λ2 now reaches ≈ 6.80, i.e.
85 % of the total variance, compared to 69 % for the raw data. Modes 3 and 4
are essentially the same as for raw data, apart from a permutation of their rank.
The exact same thing happens for modes 5 and 6, and again for modes 7 and 8.
Mode 4 (ex mode 3 for raw data) now associates shorter time duration with more
volume added and cancelled in the order book. Interestingly, bid-ask symmetric
fluctuations capture 82 % of the total variance, leaving only 18 % of the variance
to asymmetric, price changing fluctuations.
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Figure 8.4: Normalized eigenvectors of the PCA decomposition (Binned data). For
clarity purposes, the amplitudes lower than 0.15 (corresponding to weights less than

0.152 ≈ 2%) have been set to zero. We observe 4 symmetric modes (1, 3, 4 and 8) and 4
anti-symmetric modes (2, 5, 6 and 7). The directions should be interpreted as Box-Cox

transforms of the original directions (except return r).

8.4 A VAR model for flow dynamics
In this section, we present the mathematical framework underlying our modeling
approach. We adopt a Vector Autoregression (VAR) model to capture the dynamic
relationships among the variables associated with each price change. Regressing
on the projection of the data onto eigenvectors rather than directly on the data
itself helps handling collinearity issues and eases the interpretability of the results.

We will be interested in understanding the evolution of Xn defined in Eq. (8.1),
for the binned data. (For the raw data, the large fraction of zero entries would
require a specific treatment, following for example [135–137]. We leave this for
later investigations). In order to do so, we transform the data using Box-Cox and
set up an Auto-Regressive Vector Model in the space of the 8 principal components
(or eigenmodes) described in the previous section. For every n, the Box-Coxed
vector Xn is projected onto the jth eigenmode Uα, and the resulting projection
is further demeaned and normalized to have unit variance, finally defining an
8-vector in the eigenmode space Yn.

The p-lag VAR model is then specified by the following evolution equation

Yn = Φ1Yn−1 +Φ2Yn−2 + . . .+ΦpYn−p + ϵn, (8.8)

where ϵn represents a vector of white noise innovations and Φk are 8 × 8 tran-
sition matrices capturing the inter-dependencies and temporal dynamics in the
eigenmode space. The VAR model is calibrated using standard regression meth-
ods, except that we add by hand an additional constraint that the model has
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to respect the bid-ask symmetry. This means that all coefficients (Φk)αβ relat-
ing bid-ask symmetric modes (α = 1, 3, 4, 8) to bid-ask anti-symmetric modes
(β = 2, 5, 6, 7) must be zero. Without this constraint, all symmetry-breaking
coefficients are found to be very small anyway.

8.4.1 1-lag VAR model

We first focus on the p = 1 lag VAR model:

Yn = Φ1Yn−1 + ϵn. (8.9)

The transition matrix Φ1 is presented in the table 8.2. The most significant
elements, i.e., such that |(Φ1)αβ |> 0.1, are highlighted in bold and correspond
mostly to diagonal elements (except 22 and 66). However, a better description of
the transition matrix is in terms of its eigenvalues and eigenvectors. 6 eigenvectors
correspond to real eigenvalues, 5 positive and one negative, and 2 eigenvectors
correspond to a pair of complex conjugate eigenvalues, with a very small modulus.
The five eigenvectors with largest norm are shown in Fig. 8.5. The fact that
all eigenvalues within the unit circle means that the lag-1 VAR model is stable,
with fluctuations dampening instead of getting amplified. Notice that the top
eigenvalue is equal to 0.68 and corresponds to a symmetric cancellation mode,
mostly reflecting the activity of market makers.

The second mode, with eigenvalue 0.56, is also symmetric and corresponds to more
limit orders, less market orders and less inter price change time, or vice-versa. The
largest anti-symmetric mode has eigenvalue λ5 = −0.23 and is the imbalance level
for all flows, which is seen to be mean-reverting (since λ5 < 0).
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Mode 1S 2A 3S 4S 5A 6A 7A 8S

1S 0.56 0.00 -0.02 -0.03 0.00 0.00 0.00 0.09
2A 0.00 -0.06 0.00 0.00 -0.00 0.04 -0.09 0.00
3S 0.05 0.00 0.53 0.00 0.00 0.00 0.00 -0.09
4S -0.06 0.00 -0.02 0.59 0.00 0.00 0.00 -0.03
5A 0.00 0.01 0.00 0.00 0.15 -0.02 -0.04 0.00
6A 0.00 0.08 0.00 0.00 -0.09 -0.05 0.09 0.00
7A 0.00 -0.08 0.00 0.00 -0.08 0.09 -0.11 0.00
8S 0.12 0.00 -0.05 -0.04 0.00 0.00 0.00 0.52

Table 8.2: The transition matrix for microstructure modes, where values exceeding a
significance threshold of 0.05 in the corresponding p-value have been set to zero.

Columns correspond to input modes from time n− 1, rows to predicted modes at time n.
Symbol S (or A) refers to the bid-ask symmetry (anti-symmetry) of the modes.
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Figure 8.5: 5 eigenvectors with the largest eigenvalue norm from the decomposition of
the transition matrix. The 4 first eigenvectors have positive eigenvalues and describe

symmetric scenarios in the bid and the ask, the fifth one is anti-symmetric and
mean-reverting.

The success of the lag-1 VAR model can be quantified in terms of the predictive
R2 scores, presented in table 8.3, both across modes of the transformed variables
Yn and for the original variables Xn. Note that, as expected, R2 scores are much
higher (∼ 0.28−0.32) for symmetric modes, which carry no information on returns,
than for anti-symmetric modes (∼ 0.01− 0.03). However, the in-sample R2 scores
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and out-of-sample scores are close, highlighting the fact that the predictive value
of the VAR model is statistically significant. We have used the first 465 days of the
data for model calibration and computing the in-sample scores. The remaining
80 days are allocated for computing the out-of-sample scores.

Mode 1S 2A 3S 4S 5A 6A 7A 8S

In Sample (%) 32.4 1.2 29.1 35.1 2.43 2.39 3.07 28.8

Out Of Sample (%) 28.0 1.11 21.8 36.1 4.33 1.68 2.24 32.5

Variable ∆t V lo, b V lo, a V c, b V c, a V ex, b V ex, a r

In Sample (%) 21.3 29.8 29.8 36.4 36.0 25.3 24.8 1.60

Out Of Sample (%) 27.4 22.7 21.5 25.6 24.1 22.9 25.0 1.46

Table 8.3: R2 scores in % both in mode space (top) and in the original space (bottom).
Symbol S (or A) refer to the bid-ask symmetry (anti-symmetry) of the modes.

The R2 score of 1.6% for return r is of particular interest. It is in particular
significantly higher than the score of 0.49% obtained when predicting returns
using the past return as the only feature. This shows that flow variables add
useful predictive power to the return variable.

8.4.2 Multi-lag VAR model

In this subsection, we extend our modeling approach to the multi-lag Vector Au-
toregression VAR(p) model, specified by Eq. (8.8) with p > 1. Interestingly,
adding more lags reduces auto- correlation of residuals and increases the out of
sample R2 score of all the modes, by ∼ 25% both for the symmetric and anti-
symmetric ones when p increases from 1 to 10 – see tables 8.4 and 8.5.

Lags 1 2 3 4 5 6 7 8 9 10

In Sample S (%) 31.4 35.8 37.3 38.1 38.5 38.8 39.0 39.2 39.3 39.4
Out Of Sample S (%) 29.6 34.3 36.2 37.0 37.3 37.6 37.9 38.1 38.3 38.4
In Sample A (%) 2.29 2.56 2.69 2.77 2.86 2.94 3.00 3.05 3.10 3.15
Out Of Sample A (%) 2.35 2.56 2.65 2.73 2.79 2.85 2.92 2.99 3.03 3.04

Table 8.4: Average R2 scores for symmetric (S) and asymmetric (A) modes in-sample
and out-of-sample for different number of lags p.
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Mode 1S 2A 3S 4S 5A 6A 7A 8S

In Sample (%) 36.0 1.46 35.5 43.5 3.47 2.29 4.00 36.3

Out Of Sample (%) 36.7 1.30 27.5 45.4 5.53 2.22 2.89 42.6

Variable ∆t V lo, b V lo, a V c, b V c, a V ex, b V ex, a r

In Sample (%) 30.4 37.6 37.9 44.0 43.8 32.1 31.5 1.87

Out Of Sample (%) 36.3 31.4 29.4 34.1 32.1 28.4 31.3 1.7

Table 8.5: R2 scores using the VAR(8) in % both in mode space (top) and in the
original space (bottom). Note that the out-of-sample R2 score of the returns increases

from 1.46 for p = 1 to 1.7 for p = 8.

Another interesting question is whether adding memory to the system makes it
less stable. In order to discuss this point, let us look for a vector Z such that at
long times the p-VAR model in the absence of innovations would yield

Yn ≈n≫1 γ
nZ.

Injecting in eq. (8.8) and dividing by γn, we find the following condition:

Z = MpZ, Mp(γ) :=

[
p∑

k=1

γ−kΦk

]
. (8.10)

In other words, one should look for a value of γ such that the matrix Mp(γ)
has one eigenvalue exactly equal to unity, the corresponding eigenvector defining
Z. The least stable direction of the p-VAR model is associated with the largest
possible value of |γ| (with γ possibly complex).
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Figure 8.6: The two largest values of γ1,2(p), such as the matrix Mp(γ) has an
eigenvalue equal to unity, as a function of lag p. The plot compares methods for

normalizing the data: one using all 545 available days and the other where each day is
normalized independently. Inset: same results, plotted as a function of 1/p showing a

near perfect linear behaviour extrapolating to unity when p→∞.

Quite interestingly, we observe in Fig. 8.6 that both γ1(p) and γ2(p) can be
fitted as 1− C1,2/p and therefore appear converge to unity as the number of lags
increases. This means that the dominant eigenvectors, shown in Fig. 8.7, become
more and more persistent as we increase the number of lags p. This suggests
that the flow dynamics is in fact marginally stable, which is in line with the well-
known stylized fact that order flow has power law, long memory correlations [88],
corresponding to a unit root within a VAR description, or to marginal stability
within a Hawkes process description [131]. Marginal stability could however result
from the inadequacy of the VAR model to represent the data, since the only way
to represent long memory correlations within a VAR framework is to have unit
roots.
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Figure 8.7: Dominant eigenvectors of Mp(γ1,2). For p = 1 we recover eigenvectors from
Fig. 8.5. When p ≥ 2, all dominant eigenvectors are essentially independent of p and are
associated with important liquidity fluctuations. For example γ2 describes a persistent
mode with less order placements and more cancellations, which can lead to liquidity

crises.

Dominant eigenvectors are identical for all p ≥ 2 and describe liquidity fluctua-
tions. The mode associated with γ1(p) predicts less (or more) placements than
usual. The second one, with rate γ2(p), describes a persistent mode with less
order placements and more cancellations, which can lead to liquidity crises, as
argued in [64]. Even if γ2(p) is below unity, the system appears to be very close
to this stability boundary, and therefore be prone to endogenous liquidity crisis.
In this context, recall that we chose a particularly stable, large tick contract (the
EUROSTOXX); it would be interesting to perform the same analysis with small
tick single name stocks.

8.5 An attempt to model price impact

In this section, we are interested in understanding the impact of the trading of one
agent on the market and its future states within the VAR framework established
above. For the rest of the section, we focus on the impact of perturbations of
the flows at the ask without any loss of generality since the regression matrix is
symmetric between the bid and the ask.

A phenomenon commonly studied in the literature is price impact [49, 127, 138],
or by how much a trader modifies the price of an asset by buying or selling it. This
metric is crucial for practitioners, but also from an academic point of view. Price
impact exhibits interesting theoretical properties, such as the so-called square root
law (for a review, see [49, 127]).

In principle, the mechanical impact of market orders (i.e. the part that is inde-
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pendent of any information motivating the trades) is defined as [49, 127]

I(ℓ) := E[mt+ℓ −mt|exect]− E[mt+ℓ −mt|no-exect], (8.11)

where m(t) is the mid-price at time t, when a market order is executed. In other
words, one should compare the price change between time t and t + ℓ with and
without order execution. Of course, such a measurement is impossible, since these
two states of the market are mutually exclusive. Therefore, in practice one assumes
that for short enough time scales, market orders issued by slow traders have little
short term predictability such that the second term in Eq. (8.11) is negligible.
Hence the observable impact is defined as

Iobs(ℓ|exect) := E[mt+ℓ −mt]. (8.12)

The whole idea of constructing a faithful generating model for prices and order
flow is to be able to perform numerically the “do-operation” [49] described in Eq.
(8.11).

We have performed such a numerical experiment using the VAR model calibrated
above on binned data – which, we recall, aggregates together 20 successive sig-
nificant price changes. The procedure is as follows: we add to the observed flow
of market orders at the ask a specific quantity corresponding to our extra buyer,
between coarse-grained time n and time n + k. At each time step, the instanta-
neous impact is calculated using the average impact curves obtained in [37], that
are reproduced in the B.

However, there is a subtlety related to the execution flows predicted by the VAR
model. Rotating the matrix Φ1 into real flows’ space, we obtain the matrix shown
in table 8.6.
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Variables ∆t V lo, b V lo, a V c, b V c, a V ex, b V ex, a r

∆t 0.56 0.05 -0.05 -0.00 0.00 -0.02 -0.03 -0.0
V lo, b -0.02 0.21 0.22 0.06 -0.05 0.02 -0.01 0.06
V lo, a -0.02 0.22 0.21 -0.05 0.06 -0.01 0.02 -0.05
V c, b -0.00 0.08 -0.06 0.39 0.28 -0.00 0.02 -0.04
V c, a -0.00 -0.06 -0.08 0.28 0.39 0.06 -0.00 0.04
V ex, b 0.02 0.02 0.04 -0.02 0.04 0.26 0.28 -0.05
V ex, a 0.02 0.04 0.02 0.04 -0.02 0.28 0.26 0.05
r -0.00 0.06 -0.05 -0.06 0.04 -0.02 0.02 -0.14

Table 8.6: An approximation of the transition matrix in the real flows’ space obtained
as a rotation of Φ1 back to the real variables space. Columns correspond to input

variables at time step n− 1, rows correspond to an estimation of the variables at time
step n. Note: This is not strictly speaking a transition matrix because of the non-linear

Box-Cox operation.

This matrix reveals that an increase in the market order flow at the ask is most
likely followed at the next time step by an increase in market order flows in both
the ask and the bid, with slightly higher values observed at the opposite side. The
succession of market orders at the same side is a manifestation of the well-known
long range correlation of the flows in the market [88], which is primarily due to
metaorder splitting, with very little contribution from herding [119].

Our model has been trained on real-world price and flow data, whose causal struc-
ture includes but cannot be reduced to a perturbation-response mechanism. Sin-
gle market participants do not act in isolation and they may, through complex
trading strategies, influence the market dynamics on long time scales, and even
cross-sectionally. To the extent that the exogenous perturbation, whose impact
we wish to simulate, is not representative of the average market participants’
trading schedule, the model cannot fully distinguish whether correlations are due
to market response or individual complex trading strategies. In order to model
consistently the impact of a specific exogenous metaorder, we must avoid double
counting such contributions. Thus, as an approximation, within our simulation
framework we disregard subsequent execution orders predicted by the model on
the same side and only take into account induced effects. The perturbed flows
and returns are then propagated forward in time using the VAR model. The to-
tal price impact is then obtained by subtracting the unperturbed observed price
trajectory and averaging over time. However, it is important to note that this ap-
proach is, even on a conceptual level, an approximation whose accuracy is difficult
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to quantify. The result for the VAR(10) model is shown in Fig. 8.8.
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Figure 8.8: Simulations of impact of metaorders of length k = 4. For the first 4 time
steps, a market order of size q is added to the observed execution flow. Starting from

the 5th time step the market is no longer perturbed. We rescale the measured impact by
the size of the added trade flow.

Empirically, as mentioned above, impact is strongly concave, and shows a square-
root dependence both in time (within a metaorder) and in total size (at peak
impact), see [127], chapter 12. Furthermore, such an impact strongly mean-reverts
at the end of a metaorder. Our methodology, however, yields impact behaviour
that differs in notable ways. What we observe in Fig. 8.8 is that the generated
impact is only slightly concave within the metaorder, and then decays back down
once the metaorder is completed. Despite this, the peak impact is linear in the
size of the metaorder, contrarily to the concave behavior in observed market data.
This linear shape is in fact expected within our perturbation approach, where
the added trade flow is small enough to be absorbed by the market, leading to a
linear behavior of the non-linear Box-Cox transformation. Furthermore, the level
of reversion of the price between the moment we stop perturbing the market and
when the price stabilizes is around 75% of the peak impact, whereas impact decay
is much steeper in real data, with a significantly lower plateau value [44].

Note that Fig.8.8, as well as the overall approach, was independently reproduced
and validated in [21]. This reinforces the conclusion that capturing metaorder
impact using linear models is nearly impossible. This very limitation motivates the
generalized propagator framework and underpins the work developed throughout
PartII.
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The conclusion of this section is that although our VAR framework offers a good
benchmark for modelling the impact of metaorders, a crucial element appears to
be missing since the strongly concave, mean-reverting nature impact is missed.
We conjecture that such a missing element is an explicit reference to recent price
changes, in a way to incorporate the idea of asymmetric latent liquidity, as argued
in [15, 127]. Additionally, due to the use of the impact curves from [37] for
computing the instantaneous return, the return produced by our model is diluted
in scale. To address these limitations, future work could benefit from exploring
models with enhanced non-linearity, such as neural networks.

8.6 Conclusion and further discussions

The frantic and noisy order book dynamics at the highest frequency hamper mod-
elling attempts based on order by order activity. In this work, we have devised
a specific coarse-graining procedure to extract meaningful information from such
erratic flow data. First, in order to remove “flickering” bid-ask bounce noise, we
have proposed a definition of significant price changes, and defined the flow vari-
ables of interest as aggregates of market orders, limit orders and cancellations
between two such significant price changes.

However, we have found it necessary to introduce a second coarse-graining time
scale in order to (i) smooth out strong price mean-reversion that survives until
∼ 20 significant price changes and (ii) eliminate the large quantity of zeros in the
flow variables that make linear analysis difficult to interpret.

One of our most interesting novel result is the appearance of what we called
“microstructure modes”, i.e. principal components of the joint, coarse-grained
dynamics of price and order flow. These modes are extremely stable over time
and all have an intuitive interpretation. They fall into two categories: bid-ask
symmetric and bid-ask anti-symmetric. The first category describes, for example,
an increase/decrease of cancellations and a decrease/increase of limit orders on
both sides of the book simultaneously, associated to the dynamics of liquidity. The
second category describes, for example, an increase of market orders at the ask
and a decrease of market orders at the bid, associated to a positive price return.

Using these microstructure modes as inputs, we built and calibrated a multi-lag
VAR model that captures their dynamics. The model is stable in time and leads
to high R2 scores ∼ 30 − 40% for symmetric modes and, as expected, lower but
significant R2 scores ∼ 2−3% for anti-symmetric (directional) modes. Non-linear,
neural network models that take our microstructure modes as features should
improve further the quality of the prediction.
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We have found that the VAR model becomes marginally stable as the number of
lags increases. This reflects the well-known long memory nature of the order flow
in financial markets. The analysis of the flow directions that become unstable
gives further credence to the “endogenous liquidity crisis” scenario suggested in
[55, 64, 132–134].

Finally, we have used our VAR formalism to measure the impact of metaorders
on the price. Although we observe some price mean-reversion at the end of the
metaorder, similar to real data, we failed to reproduce the concave square-root
dependence of impact on time and volume. We conjectured that an explicit con-
ditioning of the VAR transition matrix on the recent returns is needed to capture
“latent liquidity” effects that are thought to be at the origin of impact concavity
[15, 127].

When working on the “raw", unbinned data, we were confronted with the fact
that at short time scales, most of the observed flow volumes are null, making our
linear VAR model unsuitable. One could address this problem using recent sta-
tistical techniques [135–137], or using more complex neural network architectures
combining recurrent neural networks and attention techniques. It would also be
interesting to revisit the price impact problem within this framework.

Take Home Message

• We introduced a coarse-graining procedure to extract meaningful sig-
nals from noisy, high-frequency order book data.

• Our analysis revealed robust and interpretable “microstructure
modes”—principal components that capture the joint dynamics of
price and order flow, split into bid-ask symmetric (liquidity) and anti-
symmetric (directional) patterns.

• A VAR model built on these modes successfully captures their tem-
poral structure, with high predictive power for symmetric modes.

• The marginal instability of the VAR model as lags increase reflects
the long-memory nature of order flow and supports the endogenous
liquidity crisis scenario.

• This framework fails to capture the square-root impact law, suggesting
the need for nonlinear dynamics or return-conditioned transitions.
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Chapter 9

A generalized Santa Fe-like
model to study liquidity crisis
in the Limit Order Book

Done properly, computer simulation represents a kind of “telescope for the mind”,
multiplying human powers of analysis and insight just as a telescope does our powers

of vision.

Mark Buchanan

In the previous chapter, we showed that precursor signs of endogenous liquidity
crises can already be observed at the microstructure level, even at high frequency.
Motivated by this further evidence challenging market stability, we now turn to
a Santa-Fe inspired model —an extension of the original zero-intelligence agent-
based framework, augmented with several forms of feedback. With these feedback
mechanisms in place, we find that the order book dynamics undergo second-order
phase transitions. Crucially, the system can shift from a stable to an unstable
regime purely as a result of internal dynamics —depending on the degree of endo-
geneity and the memory of agents —without any external shocks. This provides
yet another rejection of the Efficient Market Hypothesis.
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9.1 Introduction
Among its key predictions, the EMH asserts that markets operate in equilibrium,
with prices fully reflecting all available information. Price movements are assumed
to result from external news, and any deviations from equilibrium are expected to
be promptly corrected. Within this framework, crises—such as crashes or liquidity
dry-ups—are interpreted as rare, exogenously triggered anomalies.

However, as discussed in Chapter 3, even a brief look at financial market data
challenges this view. Markets display recurring episodes of excessive volatility
and heavy-tailed return distributions that are hard to reconcile with the EMH. At
the macroscopic level, this manifests as flash crashes; at the microstructural level,
it appears as abrupt price jumps occurring in the absence of any identifiable news.

These phenomena point to two key conclusions. First, the EMH likely incorrect
—as we’ve been trying to convince the reader throughout this thesis, with in-
creasing insistence. Second, market instabilities need not be triggered by external
shocks, they can emerge spontaneously from internal feedback mechanisms inher-
ent to market dynamic. Another striking particularity that caught the eye when
examining financial prices is their similarity to turbulent processes well-known in
statistical physics. As Mandelbrot [24] first pointed out, prices exhibit intermit-
tency, scale invariance, and closely resemble multifractal processes. In physics,
fractal properties often serve as indicators of phase transitions—critical points
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where a system undergoes a fundamental change. These transitions are typically
characterized, at criticality, by scale invariance, self-similarity, and power-law dis-
tributions, all hallmarks of fractal structures.

The occurrence of large price jumps and the striking statistical similarities between
financial time series and multifractal processes motivate a deeper investigation of
the limit order book as a complex, interacting system—where orders behave like
particles. While a full theoretical description remains elusive, agent-based models
(ABMs) offer a powerful framework to explore the emergence of such phenomena
from simple agent behavior. Among these, the zero-intelligence model [126] has
been a foundational starting point, successfully reproducing several stylized facts.
However, it falls short when it comes to explaining extreme events like liquidity
crises or abrupt price dislocations.

A significant step forward was made in [64], where the authors introduced a feed-
back mechanism that makes otherwise random agents react to past price trends.
This single addition was sufficient to induce a second-order phase transition in the
order book, leading to endogenous liquidity crises—without any need for external
shocks. As in physical systems, this transition is governed by a small number of
parameters: here, the degree of endogeneity and the memory span over which
agents integrate past price movements. Near criticality, key observables such as
the spread and liquidity display power-law behavior, with associated critical ex-
ponents extracted using finite-size scaling techniques.

Building on this result, the present chapter aims to extend the model by incorpo-
rating a broader class of feedback mechanisms and testing the robustness of the
transition. We also introduce a new method to extract critical exponents more re-
liably and propose a framework for analytically deriving the stability frontier —a
step toward bridging the gap between microscopic agent behavior and macroscopic
market instability.

The outline of the Chapter is as follow :

• We begin by providing a more in-depth presentation of the Santa Fe model
introduced in [64]

• We then propose several extensions to make the model more realistic.

• Next, we perform a numerical analysis to investigate the presence of a second-
order phase transition for each type of feedback.

• Finally, we introduce a simple framework to recover the stability frontier,
solved under the mean-field approximation.
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9.2 Motivation : The initial Santa Fe model with feeed-
back

The efficient operation of financial markets relies heavily on the order book, which
plays a crucial role in facilitating interactions between buyers and sellers. A widely
used framework for simulating market dynamics is the Santa Fe model (see [139],
[126]). This agent-based model is built on minimal assumptions: orders of unit
size are submitted according to Poisson processes, and the tick size, representing
the smallest possible price increment, is set to one.
To simulate such a market, one has to specify a few parameters :

• N is the size of the limit orderbook

• T is the number of time steps for the simulation

• λ Poisson rate for limit order deposition, per time per tick.

• 2µ the Poisson rate for market order deposition per unit time, additive,
falling with a probability 1/2 at the best bid or the best ask quote.

• ν0 Poisson rate for constant cancellation per time per order.

• dPt a modification of the mid price : dPt = ±ψdNt with ψ the tick-size and
Nt a point process

While this simple model has not been able to recover stylized facts such as diffusive
prices or spread-volatility relationship, it can nevertheless account for the basic
mechanisms of trading. Furthermore, the Santa Fe model is interesting from a
physical point of view, as analogy can easily be made with statistical physics and
complex systems. One can interpret orders as particles falling on a 1D grid. The
are two kinds of particles, corresponding to buy and sell orders. If two particles of
the same nature fall on the same site, they pile up, but if they are of a different na-
ture, they annihilate each other. This classic framework, with fixed Poisson rates
is known to be at equilibrium, as long as λ > ν, see [7]. Several extensions of the
original Santa Fe model have been proposed to better capture stylized facts. For
example, [140] introduces market order aggressiveness to generate diffusive prices,
while [63] explores a path-dependent refill probability, to recover price diffusivity
or the famous Square Root Law impact of metaorders.

To study endogenous liquidity crises, a simple feedback on the cancellation rate
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was introduced in [64]. This feedback reads:

νZt = ν0 + α

(ˆ t

0

√
2βe−β(t−s)dPs

)2

︸ ︷︷ ︸
Zumbach Kernel

(9.1)

where α is the endogeneity ratio and β the memory of the system. This feedback
represents the impact of past price trends on future activity. Indeed, for market
makers, prolonged trends correspond to significant losses, as they trade against
the market. Consequently, the longer the trend persists, the larger their absolute
share inventory grows, but the lower its value. This kernel is also natural in the
sense that it has been calibrated on empirical data, see [64, 131].

Incorporating this simple feedback across all levels of the order book yields in-
triguing results, as the system appears to follow a second-order phase transition
:

• For α superior to a critical value α∗, an infinitely large orderbook (N →∞)
will empty in finite time

• Close to the critical point, several functions such as susceptibility or spread
distribution exhibit a power-law scaling behavior.

• The critical exponents from the finite-size scaling procedure turns out to be
robust regarding fixed values of the system, such as initial conditions.

This result is crucial for market stability, as it demonstrates that a simple agent-
based model can account for the anomalously high frequency of non news-related
price jumps observed in real financial markets. However, we aim to extend this
model to incorporate more realistic feedback mechanisms, to assess whether the
phase transition persists when the simulated order book more closely resembles
real markets.

9.3 A 4 degree of freedom Santa Fe model
To be closer to reality, we gave this model four different degrees of freedom :

• Kernel : We introduce the Hawkes kernel :

νHt = ν0 + α

ˆ t

0
βe−β(t−s)dP 2

s︸ ︷︷ ︸
Hawkes Kernel

(9.2)

The Hawkes kernel can be interpreted as the effect of volatility on future
activity : a period of high volatility represents a significant risk for traders,
who are therefore inclined to cancel their orders.
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• Spatial range: In real markets, orders placed close to the mid-price are more
likely to be canceled, as they are often submitted by high-frequency traders.
These HFTs are also more responsive to endogenous signals, as they rely on
them to earn money. Thus, they are the most affected by these feedback
effects . We call local feedback a feedback that occurs only at the best quote,
while the cancellation rate remains constant for all other quotes, and global
feedback the one that occurs on the whole orderbook.

• In-spread rules The aggressiveness of order placement may also be a key
factor in the existence of a phase transition. In the original Santa Fe speci-
fication, limit orders could only be placed within one tick of the best quote,
referred to as mild deposition. Alternatively, orders could be allowed to fall
at any price between the best quote and the mid price. We will call it wild
deposition. This could significantly influence the phase transition, as during
a liquidity crisis, the spread may grow to infinity, which in turn increases the
probability of an order falling within the spread. This compensation phe-
nomenon could potentially mitigate the crisis, thus potentially destroying
the phase transition property.

• Triggering Events : Initially, all feedback mechanisms were based on mid-
price variations, dPt. However, allowing orders to fall within the spread can
lead to artificially large dPt values, driven by random, insignificant events
where a single order falling in the middle of the spread. To resolve this
issue, we introduced an additional triggering event, assigning a value of one
whenever the spread opens. Then, the dPt becomes I(dSt > 0) with St being
the size of the spread :

νSt = ν0 +

ˆ t

0
βe−βtI(dSt > 0) (9.3)

We can then simulate this model with 16 different configurations :

Spatial Range In-spread rules Kernel Triggering Event
Global Mild Zumbach Mid Price Change
Local Wild Hawkes Spread opening

Table 9.1: Summary of all possible feedback configurations

From now on, we will refer to feedbacks by their acronyms.To simplify the notation,
in the rest of the Chapter we will refer to each feedback mechanism by its acronym.
For instance, the Global Mild Zumbach feedback is denoted GMZ. By default, the
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triggering event is a change in the mid-price. If we want to refer to feedback
triggered by a spread opening, we will denote this by adding an ’S’ at the end of
the name.

9.4 Investigating phase transitions in the 4DF Sante Fe
model

9.4.1 Stability maps
A first step is to verify whether instabilities exist for those configurations, by
computing the probability that the time of crisis τ is inferior to the simulation
duration T , see Figure 9.1.

Figure 9.1: Evolution of PN [τc ≤ T |α, β] for the Hawkes global mild retroaction,
clearly dividing the (α, β) space in two parts : a blue stable region and a red unstable

one. This map is obtained for : λ = 10, µ = 10, ν0 = 1, T = 100, N = 240. See Appendix
C for other stability maps.

These diagrams clearly distinguish two phases in the parameter space (α, β), sep-
arated by the frontier f(α, β), which will be the focus of Section 9.5. However,
since (N,T ) are fixed in these simulations, these stability maps are not conclusive
enough to claim that the system exhibits a phase transition. As pointed out in
[64], to answer this questions one should study the behavior of PN [τc ≤ T ] in the
double limit (N,T )→∞. Taking T →∞ before N does not provide information
on the system, as the probability if crisis will be always one for a given N , if one
wait long enough. Thus, mathematically speaking, one should find an α∗(β) such
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that :

lim
T→∞

lim
N→∞

PN [τc ≤ T, α] =

{
1, when α ≥ α∗

0, when α ≤ α∗ (9.4)

This equation is solvable as, for α > α∗, limN→∞ PN [τc ≤ T, α] > 0. Thus, the
stability of the system lies in a fragile competition between the effect of those
two limits. Before going into more mathematical considerations, we can perform
a finite size and time scaling method to empirically question the existence of a
phase transition.

9.4.2 Finite-size scaling

Following the approach outlined in [64], we employ the finite size scaling method
to determine the critical exponents. Finite size scaling, introduced by [141], is
a useful technique for extrapolating finite systems to the thermodynamic limit.
Phase transition theory assumes an infinite system without boundaries; however,
our simulations are limited to finite values of (N,T ). In this context, finite size
scaling allows us to examine how system responses are affected by this constraint.
Near the critical point, the fluctuations due to finite size effects should be negligible
in comparison to those arising from the phase transition itself. In our analysis, we
utilize the same scaling functions as those described by Fosset et al. [64] :

PN [τc ≤ T, αK ] = F
(
T (αK − αm(N,T ))ζ

)
(9.5)

Here, F (u) is a monotonic regular function that approaches 0 as u → −∞ and
approaches 1 as u→ +∞. The term αm(N,T ) is defined as:

αm(N,T ) = α∗ − 1

T 1/ζ
g

(
Nη

T

)
(9.6)

where g(v) is another function that converges to a constant g∞ as v → ∞ and
tends to +∞ as v → 0.

We then introduce the function χ(αK , T,N) as:

χ(αK , T,N) = T γG
(
T (αK − αm(T,N))ζ

)
= T γG

(
NT−1/η, T 1/ζ(αK − α∗)

)
(9.7)

Where χ is the susceptibility and reads :
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χ(αK , T,N) = V ar(min(τc, T )) (9.8)

This scaling form has the following interpretation:

• When 1 ≪ T ≪ Nη, αm ≈ α∗. As αK increases, PN [τc ≤ T, αK ] evolves
from 0 (no crises) to 1 (crises) in a region of width T−1/ζ around α∗.

• When T ≫ Nη, αm becomes negative, meaning that PN [τc ≤ T, αK ] is close
to 1 for any αK if one waits long enough.

By applying the finite size scaling procedure detailed in [64], we can extract γ and
ζ for each configuration, as shown in 9.2. However, for determining η, the exponent
relating N and T , we propose a new procedure, as the previously suggested one
focused on the evolution of the maximum of the spread, which may introduce
some bias.

9.4.3 Overview of exponents values

The first parameter of the phase transition is γ, which represents the scaling
parameter of the crisis time variance. For most feedback configurations, γ ≈ 2, as
expected, since the variance naturally scales as T 2.
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Figure 9.2: Derivation of γ governing the scaling of the maximum of the susceptibility :
limT→∞ maxχ(α, T,N) ∼ T γ . Simulation were done for λ = 10, ν0 = 1, N = 140 and

β = 1.

For the second exponent ζ we obtain :
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Figure 9.3: Derivation of ζ for the global Hawkes mild retroaction, for λ = 10, ν0 = 1,
N = 140 and β = 1. Left : Scaling of the suceptibility, for different T . The x axis is

rescaled by the exponent ζ where the y axis is the rescaled by γ. Right : Rescaling of
the transition probability function, with the x-axis rescaled by ζ. Additional finite-size

scaling plots are provided in Appendix C.

We performed this finite size scaling for most of retroaction :

GMH GMZ LMH LMZ GWH LWH LWHS LWZ LWZS

γ 2 2 2 2 2 2 3 2 2
ζ 2 1 14 99 7 -3 1 10 10

Table 9.2: Summary of the values of γ and ξ for different feedbacks. For reference,
GMH stands for "Global Mild Hawkes" feedback. Parameters values used in simulations

are given in the appendix, along with the corresponding graphs.

As can be readily observed, some of the exponents obtained from the finite-size
scaling appear unrealistic (e.g., −3). We suspect this behavior is related to spread
variations: allowing orders to fall within the spread can trigger large mid-price
movements, which in turn lead to significant kernel fluctuations. This issue moti-
vated the introduction of new types of triggering events, such as spread openings
(see Section 9.3). To reduce the resulting noise, we focus exclusively on spread-
opening events and count only one event per spread variation. As for the extreme
value 10, 14, 99, it likely corresponds to the limit ζ → ∞, where the rescaled
quantity T 1/ζ(α− αK) becomes independent of T .
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These findings are still under investigation, as additional simulations are being
conducted to better understand the underlying retroactions. The ultimate—and
admittedly optimistic—goal is to classify these retroactive effects into distinct
universality classes.

9.4.4 Study of spread explosion

One of the noteworthy facts to emerge from the simulations is the behaviour of
the expected value of the spread : E[St|α, β], that scales as a power law of time
at criticality :

• α(β) < α∗(β)⇒ E[St] ∼ S̄(α, β)

• α(β) = α∗(β)⇒ E[St] ∼ t1/η, η ∈ N

• α(β) > α∗(β)⇒ E[St] ∼ et

Therefore, near criticality, we propose the following finite-time scaling functions
to rescale the spread dynamics for a given β :

E[S(t, α < α∗)] ∼ t1/η(|α− α∗|)ζ (9.9)

We believe this method is more robust than the one proposed in [64], as focusing
on max[0,t] St may introduce bias.
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Figure 9.4: Explosion of the spread close at the critical α∗. Simulation was done for
the LMH retroaction, with λ = 10, ν0 = 1, β = 1 and N = 1000. Once rescaled by t−1/η

with η = 2, it clearly reveals the value of α at which the transition occurs. Further
spread scaling plots can be found in Appendix C.
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To obtain more accurate results, here is a convenient method to determine the
parameters(α∗, η). First one can find the value of η by plotting E[S(t,α>α)]

tξ
for

ξ ∈]0, 1] and select ξ = 1/η such as one of the curve is a horizontal straight line.
Then, one should fix x = t1/η and fit E[S(t,α>α)]

x = (a0 + (a1(α)x)
q)1/q with same

optimal a0, q for all curves. Then, by taking optimal α1(α) for each α, one could
regress α1(α) = (α− α∗)2ζ

GMH GMZ LMH LMZ

η 2 3 2 3

Table 9.3: Values of the scaling exponent η estimated for selected feedback types.

Thus, interestingly, we can see that going from a local retroaction to a global one
doesn’t change the value of η, but this value seems to be determined by the kind
of retroaction.

9.5 Analytical Determination of the Stability Boundary

In this section, we want to analytically derive the equation for the frontier α(β),
that separates the stable and unstable phases. The overall approach can be sum-
marized as follows: there is a competition between queue depletion at the best
price, driven by an increasing cancellation rate, and the placement of orders within
the spread. From a mean-field perspective, the problem reduces to the following
question: if νZ,H,S(t) eventually reaches a level at which the mean time of queue
depletion equals the mean time for order placement within the spread, what con-
ditions on (α, β) ensure this balance is maintained indefinitely? For simplicity, we
focus on the ask side, as the system is symmetric. Furthermore, we provide here
the method and derived it for two of the feedback, even though it could be done
for all of them. This section is currently under development.

Dynamic of the cancellation:
Let’s begin by explicitly describe the dynamic of νZ,H(t). We denote by ti, the

time just after the i-th price jump. For the Hawkes kernel we get, for 0 < t <
ti+1 − ti :

νH(ti + t) = ν0 + α

ˆ ti+t

0
βe−β(ti+t−s)dP 2

s (9.10)

= (νH(ti)− ν0)e−βt + ν0 (9.11)
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and, at ti+1 :

νH(ti+1) = (νH(ti)− ν0)e−β(ti+1−ti) + ν0 + αβdP 2
ti+1

(9.12)

For the Zumbach kernel, cancellation then reads :

νZ(ti + t) = ν0 + α

(ˆ ti+t

0

√
2βe−β(ti+t−s)dPs

)2

(9.13)

= ν0 + α

(
e−βt

ˆ ti

0

√
2βe−β(ti−s)dPs +

ˆ ti+t

ti

√
2βe−β(ti+t−s)dPs

)2

(9.14)
= (νZ(ti)− ν0)e−2βt + ν0 (9.15)

Then, at ti+1 :

νZ(ti+1) = (νZ(ti)− ν0)e−2β(ti+1−ti) + ν0 + 2αβdP 2
ti+1

(9.16)

+
√
2βe−β(ti+1−ti)

√
(νi − ν0)sign(dPti+1

ˆ ti

0

√
2βe−β(ti−s)dPs (9.17)

Dynamics of queue under Poissonian order flow
The second ingredient important to understand spread dynamic is the behavior

of the best quote queue size V b
t , given by :

dV b
t = −νtV b

t dN
ν
t + dNλ

t − dNµ
t (9.18)

V b
t = V b

0 e
−
´ t
0 dNν

u +

ˆ t

0
e
´ t
s dNν

u (dNλ
s − dNµ

s ) (9.19)

E[V b
t ] = V b

0 e
−
´ t
0 νZ,H(s)ds +

ˆ t

0
e
´ t
s νZ,H(u)du(λ− µ)ds (9.20)

(9.21)

If νZ,H(t) = ν0, we recover a classic queue dynamic, in line with [7] :

E[V b
t ] = V b

0 e
−ν0t +

λ− µ
ν0

(1− e−ν0t) (9.22)

Under the assumption λ = µ, we obtain the two following equations describing
the queue behavior at the best quote V b and in the rest of the orderbook, V :
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E[V b
t ] = V0e

−
´ t
0 νZ,H(s)ds (9.23)

E[Vt] = V0e
−
´ t
0 νZ,H(s)ds + λ

ˆ t

0
e
´ t
s νZ,H(u)duds (9.24)

Then, by taking as a reference time t = 0 the time at which a queue became the
best quote, the average depletion time is then given by :

t∗ = min
t
(E[V b

t ] < 1) ⇐⇒
ˆ t∗

0
νH,Z,S(s)ds = log(V b

0 ) (9.25)

In the mean field approximation, it can be easily shown that the spread will widen
if t∗ < 1/λ. If t∗ > 1/λ, a deposition occurs within the spread, and the system
remains stable. Even if this approximation seems very gross, we will show that
it’s enough to recover the analytical frontier in certain cases. We believe that by
fine tuning this approach, it may also be possible to derive analytical frontier for
each feedback.

Solving for local Zumbach The LMZ stability frontier can be recovered in
the limit of small β. With retroaction, an additional term emerges that captures
the price trend. This term amplifies jump sizes when the i-th price change has
the same sign as the memory kernel. However, under the small β approximation
—corresponding to a long-memory regime—this kernel is significantly weakened.
Furthermore, due to bid-ask symmetry, the price tends to mean-revert. Thus, in
the mean-field approximation, this term can be neglected. We then obtain:

νi+1 = (νi − ν0)e−2β/λ + ν0 + 2αβ (9.26)
νi = λ log(V0) (9.27)

Leading to a stability frontier given by :

α =
λ log(V0)(1− e−2β/λ)− ν0(1− e−β/λ)

2β
(9.28)
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Figure 9.5: Derivation and Mean Field Validation of the LMZ Feedback Frontier:
Simulations conducted with parameters λ = 10, µ = 20, ν0 = 1, and N = 140.

Solving for the local Hawkes For the LMH feedback model, things are more
messy due to the absence of a closed-form solution. We are still interested in
identifying the conditions under which a queue is depleted before a new order is
placed inside the spread.

Asymptotic regime β → 0: In the limit of small β, the decay of the kernel is
very slow. The queue will be consumed before any new deposition in the spread
occurs if the following condition holds:

ν0/λ+ α(1− e−β/λ) > log(V0) (9.29)

This can be rewritten as a constraint on α:

α <
log(V0)− ν0/λ

1− e−β/λ
(9.30)

Asymptotic regime β → ∞: In the opposite limit, where β tends to infinity,
the feedback behaves more like a jump process: it decays rapidly between events
but exhibits sharp increases at each price change. In this regime, the condition
for queue depletion becomes, after the ith price change :

ν0/λ+
ν0 + iαβ

β
(1− e−β/λ) > log(V0) (9.31)
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which can be rewritten as :

iαβ >
β(log(V0)− ν0/λ)

1− e−β/λ
− ν0 (9.32)

These two expressions allow us to characterize the asymptotic behavior of the
system under fast and slow feedback regimes, and to identify the parameter ranges
where queue depletion dominates over order placement. However, Figure 9.6 shows
that these analytical formulas are accurate only in the small β regime.

This discrepancy can be attributed to the simulation’s implementation. For com-
putational efficiency, the evolution of ν(t) is modeled as a step function, updated
only at discrete event times. Specifically, we approximate the continuous-time
integral as:

ˆ t

0
e−β(t−s) dPs ≈

∑
Tn≤t

e−β(t−Tn)∆PTn (9.33)

Thus, with this discretization, equation (30) becomes:

{
νie0 +

∑
i>1(νi − ν0)e−βei(ei − ei−1)

ei − ei−1 =
1

λ+µ+ν(ei)Vei

(9.34)

where {e0, e1, . . . } denote the times at which events occur in the queue. The gap
between the theoretical and discretized curves can then be explained as follows:
for large β, the function ν(t) increases sharply by an amount proportional to αβ
following a price change, but also decays rapidly due to the strong exponential
term e−βt. As a result, the behavior of ν(t) approaches that of a Dirac delta
function. However, once discretized, ν(t) retains its post-jump value over a longer
interval—until the next event in the order book—thereby distorting the intended
continuous decay. Then green dashed line represents the analytical frontier based
on eq. (9.34), setting i = 10, as it provides the best fit.

However, to get rid of this approximation, the next step is to calculate this
frontier in the thermodynamic limit.
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Figure 9.6: Analytical derivation of the frontier under LMH feedback. Simulations
were performed with λ = 10, µ = 20, ν0 = 1, and N = 140. The black dashed curve
represents the analytical solution, which is asymptotically accurate in the small β
regime but fails for large β. The green dashed curves show the large-β asymptotes,

adjusted to account for discretization effects.

9.6 Conclusion

In this chapter, we explored the emergence of endogenous liquidity crises in a
Santa Fe-inspired agent-based model of financial markets. Extending the zero-
intelligence framework, we introduced various feedback mechanisms through which
agents react to past market activity. These mechanisms included volatility-sensitive
Hawkes-type kernels, price-trend-sensitive Zumbach-type kernels, spatially local-
ized responses, in-spread order placement rules, and alternative triggering events
such as spread openings. For the feedback previously investigated in [64], we
obtained comparable results, thereby affirming the validity of their analysis.

We demonstrated that these feedback loops can lead to second-order phase tran-
sitions, where the order book dynamics shift from a stable to an unstable regime
purely as a result of internal interactions—without any exogenous shocks. This
finding provides further evidence against the Efficient Market Hypothesis and sup-
ports the view of financial markets as complex, self-organizing systems.

Using a combination of empirical simulations and finite-size scaling techniques, we
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extracted critical exponents associated with the transitions and uncovered univer-
sal behaviors across feedback types. We also proposed a novel method based on
the power-law explosion of the spread to estimate the critical exponent η more
robustly. We must further interpret these exponents and investigate their possible
connections to universality classes, should such relationships exist. Furthermore,
we derived analytical approximations of the stability frontier α∗(β) for certain feed-
back configurations, providing insight into the interplay between memory effects,
endogeneity, and market fragility.
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Part IV

Conclusion and Perspectives





Conclusion

The stock market is filled with individuals who know the price of everything,
but the value of nothing

Oscar Wild

Overview of the results

Let us briefly summarize the main results of this thesis. Our aim was to better
understand the mechanisms behind price formation and to explore whether we
could support an Order-Driven view of financial markets—one in which prices are
primarily shaped by the mechanical impact of trades rather than by the flow of
information.

Chapter 4: Exploring the Square Root Law Using the TSE Dataset

In Chapter 1, we conducted an extensive investigation of the so-called Square Root
Law of metaorder impact. Thanks to a unique dataset, we were able to study this
phenomenon at a very granular level and without the biases typically associated
with proprietary data. We disentangled the impact due to the volume of child
orders from the effect of their execution rank. After categorizing each participant,
we also used the dataset to challenge the predictions of several theoretical models.

We further used this dataset to study the liquidity provider side, which is usually
less in the spotlight. We showed that liquidity providers also tend to execute
metaorders—in the sense that they submit successively multiple limit orders of
the same sign. The lengths of these metaorders follow a power-law distribution
as well, albeit with a larger exponent, indicating that providers’ metaorders are
typically shorter than those of liquidity takers.
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Finally, and somewhat surprisingly, we found that metaorders could be recon-
structed randomly—by breaking the link between traders and their executed
trades—without significantly altering their empirical properties. This undermines
what was initially considered as the main added value of the dataset.

From this investigation in the Japanese market, we drew two key observations,
which we explore further in Chapters 2 and 3:

• (O1) The order flow can be viewed as a superposition of metaorders, each
obeying a square-root impact law.

• (O2) Knowing the specific information behind trades—or at least identifying
the traders who executed them—is not essential for reconstructing realistic
metaorders.

Chapter 5: The metaorder proxy

The next natural step was to validate and extend this synthetic metaorder recon-
struction method to a broader set of assets traded on various exchanges, using
only publicly available trade data. To do so, we introduced a simple, easy-to-use
algorithm—which could, and perhaps should, be further refined—to generate re-
alistic synthetic metaorders. We call them realistic because they reproduce three
well-established stylized facts from the literature:

• The peak impact scales with the square root of the volume.

• The impact is a concave function of the execution time—more precisely, it
also follows a square-root law.

• After execution, the impact decays over a time scale longer than the execu-
tion itself.

Regarding the last point, although the nature of impact decay remains a topic of
debate, several empirical studies showed that it should decay slowly, following a
propagator kernel with a power-law form: t−β , where β ≈ 0.25. Once again, this
observation aligns well with what we observe in our synthetic dataset.

The surprisingly effective performance of this synthetic metaorder proxy has two
main implications:

• It provides a powerful tool for both practitioners and academics. Practi-
tioners can enrich their datasets, while researchers can now study market
impact without relying on proprietary data, which is often inaccessible or
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biased by execution logic. Thanks to publicly available data—especially in
crypto markets like Binance or Coinbase—realistic metaorders can now be
reconstructed by anyone.

• This approach may also facilitate a more thorough investigation of phenom-
ena that have been difficult to capture due to data scarcity, such as cross
impact, see [50].

• It fully decouples information content from metaorders. Since synthetic
metaorders are generated independently of any alpha or economic predictive
signal, they are free from informational bias. One might argue they still
reflect average information patterns, but given the consistency of impact
across synthetic metaorders, I find this unlikely.

Chapter 6 & 7: A unified framework for market microstructure

Armed with the two empirical observations from Chapters 3 and 4, we found that
these were sufficient to construct a unified framework for market microstructure.
Using (O1) and the LMF hypothesis, we were able to model a realistic order flow.
Then, drawing on (O2), we could understand how each metaorder impacts prices.

First, we had to slightly generalize the LMF hypothesis to reflect the empirical fact
that large orders tend to be less correlated than small ones. Then, we introduce a
parameter a, which allows one to give more weight to either small or large volumes.
With this, we were able to predict and validate non-trivial scaling laws related to
order flow imbalances. These findings were further confirmed with simulations in
Chapter 4 7, reinforcing the validity of our theoretical results.

Turning to prices, the situation is more subtle. As repeatedly emphasized in this
thesis, the black box that transforms order flow into prices is complex. Our goal
was to reconcile two aspects that most (all) existing theories - unfortunately -
don’t manage to conciliate: (1) the scaling of price moments, i.e., the diffusive
behavior that is crucial for financial markets, and (2) the square-root impact law
for metaorders, which encompasses three key empirical features.

To achieve this, we proposed a generalized propagator—a mechanism which, when
inserted into the black box, transforms a realistic order flow into a realistic price
process. Once again, this led to non-trivial predictions, particularly for the cor-
relation and covariance structure of the price and order flow. These predictions
matched empirical data surprisingly well and were also reproduced in our simula-
tions.
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Finally, we demonstrated that our framework naturally explains the coexistence
of a linear aggregated impact (modulated by an anomalous prefactor) and the
square-root law for individual metaorders. We were even able to predict—and
verify both empirically and in simulation—the exact (or very close) value of the
exponent in the prefactor. Moreover, applying the synthetic metaorder proxy to
our simulated price recovered the correct square-root law, although some fine-
tuning was required.

In summary, this framework delivers two key messages:

• Prices can be fully explained by the order flow. We have shown that volatility
arises mechanically from trading activity, rather than from news or informa-
tional shocks.

• We provide a simple yet powerful algorithm to simulate realistic market
dynamics—both order flow and prices. This could be highly valuable to
researchers and practitioners in market microstructure. It also supports
the order-driven view of markets, demonstrating that information is not
necessary to replicate realistic behaviors.

Chapter 8 : The VAR model and microstructure modes

After focusing exclusively on trades and mid-price dynamics, we broadened our
analysis of market microstructure to include a more comprehensive set of variables.
Once the appropriate time granularity was chosen—specifically, aggregating every
20 price changes—we defined a state vector composed of eight variables: the full
order flow (including limit orders, cancellations, and executions) at the best bid
and ask, along with the volatility (measured as the time spent in each state) and
the return.

Following a series of technical analyses, this framework enabled us to identify a
few distinct microstructural modes, which proved to be highly significant from a
phenomenological perspective. Not only did this approach allow us to predict the
system’s evolution—with greater accuracy than most traditional models, including
AI-driven ones—but it also enabled us to test the system’s stability. In particular,
as we increased the memory of the system (i.e., the lag in the autoregressive model),
we observed that the dominant mode of evolution tended toward an opening of the
spread, driven by increased cancellations on both sides of the book. In the limit,
this mode could even become critical, with its associated eigenvalue approaching
one.
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Two key findings emerge from this study:

• Markets appear to transition between a few distinct modes, and modeling
them as such provides accurate predictions for both order flow and returns.

• The concept of endogenous liquidity crises is inherently embedded in market
microstructure: the limit order book itself appears to operate near marginal
instability.

Chapter 9: A generalized Agent Based Model model to study endogenous liquidity
crisis

Seeing that liquidity crises are both predicted by market microstructure mod-
els and frequently make headlines of macro-finance journals provided additional
motivation to revisit and extend the so-called Santa Fe model. Indeed, if these
anomalies are both frequent and notoriously difficult to understand theoretically,
agent-based models appear to be an efficient tool to gain deeper insight into them.

To this end, we developed a model in which traders interact randomly with the
market, except for one crucial feature: they are subject to both leverage and the
Zumbach effect—that is, feedback from past volatility and past price trends—two
well-known mechanisms in equity markets. We proposed new realistic configura-
tions in which this feedback occurs only at the best quotes, or where agents are
allowed to place orders within the spread, to better match real-world behavior.

We showed that, in most cases, the finite-size scaling procedure is sufficient to
confirm the existence of a second-order phase transition and to extract the critical
exponents of this transition. Finally, we proposed a simple method to derive the
analytical form of the stability frontier under a mean-field approximation.

The take home message is the following:

• Assuming that agents trade randomly but react to past information is enough
to trigger endogenous liquidity crises—provided that their memory and the
level of endogeneity in the system exceed certain thresholds.
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Future works and closing remarks
Many shadow areas still need to be understood, and I fully agree that some parts of
this thesis raised more questions than they answered. I will therefore outline here
few main research directions that, to my view, may deserve further clarifications:

• Empirical extension of the metaorder proxy: This may be the most
puzzling aspect to understand —why does the proxy work so well for some
assets, and how can it be generalized to a broader set of assets? So far, the
proxy has performed remarkably well on diverse instruments, including a
highly liquid future and various stocks on the Paris Stock Exchange, with
little fine-tuning. However, preliminary investigations suggest that for some
assets, more careful calibration is needed. This makes sense: the mapping
function should resemble the true one as closely as possible, and that may
depend on the specific microstructural features of each asset. A natural next
step is to generalize the proxy to a wider range of assets and possibly use
machine learning techniques to automatically identify optimal parameters.
To the best of my knowledge, I have not encountered a single asset for
which, after some manual adjustment, the square-root law could not be
recovered—though this sometimes required significant effort. We argue that
the mapping function is not unique: obtaining realistic metaorders does not
necessarily require the exact underlying trader-trade correspondence.

• Extending the unified framework: Another promising direction would
be to extend the framework and to explore whether modifying the rate at
which new metaorders are initiated enables one to reproduce other well-
known stylized facts of financial time series, such as volatility clustering,
fat tails, the leverage effect and others. Furthermore, our framework also
makes predictions regarding the Y-ratio, i.e., the prefactor of the square-root
law. This prefactor is of particular interest to practitioners, so it would be
valuable to investigate whether our prediction can be empirically validated.
Another possible extension is to incorporate spread dynamics into the model,
which we have completely neglected so far.

• The theoretical foundation of the metaorder proxy: A more theoret-
ical task would be to use the unified framework to rigorously demonstrate
why and under which conditions the metaorder proxy works.

• Beyond the propagator: While the (generalized) propagator model offers
a convenient mathematical framework for describing market impact, it lacks
a phenomenological foundation—that is, a deeper theory grounded in the
behavior of market participants. The LLOB model comes close by introduc-
ing random agents who revise their "fundamental" price stochastically, but
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as we have shown, it does not fully align with empirical data. In my view,
a promising direction would be to model liquidity providers with memory,
building on the concept of provider metaorders introduced in Chapter 4.

• Self-organized criticality in market microstructure: Despite being
a very intriguing and active area of research, the hypothesis that financial
markets are self-organized critical systems remains unproven (to the best of
my knowledge). A breakthrough would be to show that, under a realistic
agent-based model such as the Santa Fe model with reaction terms and PnL
optimization, markets should naturally evolve toward a state close to the
unstable frontier to remain efficient.

More broadly, even if this work—hopefully—convinces the reader that the Order-
Driven view of markets is the right one, I hope that the available codes (both the
metaorder proxy and the market simulator) and the presented theories will inspire
further research and lead to deeper insights into this fascinating field of market
microstructure.
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Résumé substantiel en français

Microstructure et lois du marché

Les marchés financiers jouent un rôle central dans les économies modernes. Ils
assurent la rencontre entre offreurs et demandeurs de capitaux, attribuent une
valeur aux actifs et permettent plus généralement le financement de l’activité
économique. La théorie économique dominante les conçoit comme des marchés ef-
ficients, où les prix reflètent instantanément toute l’information disponible. Pour-
tant, l’expérience historique et l’observation empirique contredisent cette vision
idéalisée. Les crises financières, bulles spéculatives et l’excès de volatilité sont au-
tant de phénomènes qui surviennent régulièrement sans qu’un choc d’information
exogène ne puisse les expliquer. Ces anomalies révèlent le rôle déterminant des
mécanismes endogènes dans la formation des prix. C’est précisément le domaine
de la microstructure de marché, qui étudie les règles et interactions élémentaires
à l’échelle du carnet d’ordres électronique. Elle s’intéresse directement au flux
d’ordres d’achat et de vente, et au rôle de la liquidité dans les dynamiques de
prix. Cette approche s’inscrit dans une perspective d’Econophysique, qui mobilise
les outils de la physique statistique pour rechercher des lois universelles. Et ici,
bien que les marchés financiers soient souvent considérés comme chaotiques ou
imprévisibles, ils semblent néanmoins obéir à certaines régularités, notamment la
loi empirique dite "en racine carrée", que nous détaillerons par la suite. Cette loi
montre que l’évolution des prix présente des comportements quantitatifs analogues
à ceux des systèmes physiques.

Métaordres et impact mécanique

Le coeur de cette thèse est consacré à l’étude du phénomène d’impact de marché,
c’est-à-dire la réponse des prix lorsque des transactions sont effectuées. Grâce à
une base de données unique provenant de la Bourse de Tokyo, incluant les identi-
fiants des traders, il a été possible d’analyser de façon fine le rôle des métaordres,
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ces séquences d’ordres élémentaires émises par un même agent dans la même direc-
tion. Les résultats montrent que la loi en racine carrée reste valide même lorsque
l’on zoom à l’intérieur d’un métaordre, ou que l’on détruit le lien entre identité
des traders et trade effectué, et que l’on reconstruit des métaordres de manière
aléatoire. L’impact apparaît ainsi comme un phénomène purement mécanique,
indépendant de l’information, ce qui contredit fortement la vision traditionnelle.
À partir de cette intuition, cette thèse propose une méthode de reconstruction de
métaordres à partir de données publiques, permettant de reproduire de manière
réaliste les faits stylisés documentés dans la littérature. Ces "métaordres synthé-
tiques" ouvrent la voie à une recherche plus ouverte et reproductible, affranchie
des contraintes liées aux données propriétaires. Sur cette base, un cadre théorique
unifié a été développé combinant les caractéristiques statistiques des flux d’ordres,
des prix et la loi en racine carrée et introduisant par là un propagateur général-
isé qui pourrait remplacer la "boîte noire" de complexité qu’était auparavant la
microstructure de marché. Les simulations confirment la validité de ce cadre,
qui démontre que la volatilité émerge de manière endogène, comme conséquence
mécanique des interactions d’ordres.

Dynamique critique et instabilité

Au-delà de l’impact des transactions, la thèse explore la question de la stabil-
ité des marchés financiers. Un premier axe consiste à élargir la focale, consid-
érer tous les types d’ordres et utiliser un modèle vectoriel autorégressif appliqué
à plusieurs variables du carnet d’ordres. L’analyse révèle l’existence de modes
de microstructure distincts, certains symétriques associés à la liquidité, d’autres
antisymétriques associés aux déséquilibres directionnels. Ces modes permettent
d’anticiper l’évolution du marché et mettent en évidence son caractère marginale-
ment instable : le système opère souvent à une frontière où de petites perturbations
peuvent entraîner un assèchement de la liquidité et un élargissement du spread.
Dans un second temps, un modèle multi-agents inspiré du modèle de Santa Fe
est développé et enrichi de rétroactions réalistes, telles que l’effet de levier et la
dépendance à la volatilité passée. Ce modèle montre l’émergence de transitions
de phase endogènes dans le carnet d’ordres. L’analyse numérique et analytique
de ces transitions permet de caractériser une véritable frontière de stabilité du
marché et de déterminer les exposants critiques liés à ces transitions de phase du
second ordre. Ainsi, la thèse établit un pont entre la dynamique microstructurelle,
les propriétés statistiques de l’impact et la stabilité globale du système financier.
Elle suggère que les marchés, loin d’être des systèmes parfaitement efficients, sont
des systèmes complexes qui fonctionnent parfois proche d’un régime critique. La
stabilité des marchés n’est donc jamais acquise mais sans cesse menacée par leurs
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propres dynamiques internes.
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Chapter 4: the Metaorder
Proxy

Sanity Checks and Validation of the Algorithm

We provide here a non-exhaustive list of sanity checks one may perform easily to
validate the coherence of generated metaorders.

Validating the Consistency of Metaorder Size and Duration
We know that the Square Root Law is independent of the specific microscopic

parameters of a market, such as the distributions of metaorder size and duration,
as discussed in [42]. Their empirical analysis is particularly important to sup-
port the universalism of such theory. However, even though it may not modify
the impact function, it may matter to verify that our generated metaorders are
statistically coherent, see Figure A.1.
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Figure A.1: Left: Distribution of the size of synthetic metaorders, for BNP Paribas,
data from 2021 to 2023 generated with a mapping function of parameters 10 traders and
homogeneous distribution. Right: On the same dataset, distribution of the number of

child orders per metaorders, fitted by a power law of exponent 1 + µ = 4.5.

With this algorithm and those parameters, we obtained metaorders distributed
around 10−3VD, which is typically the order of magnitude one may expect for a
metaorder. We also retrieve a power law distribution of the length of metaorders,
in line with the Lillo-Mike-Farmer theory [18] and empirical studies, see [16]. How-
ever, one may note that the decay is much faster than expected, with µ = 3.5
whereas theory suggests that 1 ≤ µt ≤ 2.

Modifying public trade data
To ensure that our algorithm is not merely generating random metaorders with

the correct impact due to an unknown construction bias, we conducted several
tests that removed information from the public data. One of the simplest consists
in randomly shuffling trade signs, referring to buy or sell, in the public data, and
then perform again the aggregation method.
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Figure A.2: Comparison of the impact law for random metaorders created using public
data versus trade data where the signs of market orders have been randomly shuffled.

As expected, the average impact is null when the real signs time series is modified. Data
from 2020 to 2023, generated using a mapping function with parameters (20 traders,

homogeneous distribution).

We also verified that randomly modifying the chronology of public trades execu-
tion, keeping real permanent impact for each trade affects the impact law. More
generally, to obtain the correct impact, it is important to keep the original trade
data as it is, indicating that some information is indeed present. Our argument
is that this information is not associated with economic considerations but rather
with flow reactions and liquidity responses.

Synthetic metaorders constructed on synthetic prices
A natural question arising from this empirical study is whether public trade

data are actually needed to construct synthetic metaorders that verify the SQL.
In other words, is there a specific element or piece of information in real trade
data that distinguishes actual prices from random prices?

A possible experiment is to generate a basic synthetic price. This can be achieved
by first creating a sequence of random volumes and random signs. Each order is
then assigned a signed instantaneous impact, which can be a linear or concave
function of the volume. Then, returns read :

rt = εtq
χ, χ ∈ {0, 1

2
, 1}, q ∼ U(qmin, qmax) (A.1)

In the following simulation we set qmin = 1 and qmax = 100, but the same results
hold for q = qmin = qmax = 1, just generating synthetic metaorders with a lower
average size and variance. Based on [2], we fixed χ = 0.5.
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This process produces synthetic trade data that can serve as a foundation for
constructing random metaorders. However, metaorders constructed with this al-
gorithm won’t exhibit SQL, but a linear impact function, see Figure A.3.

Since trade signs are known to be autocorrelated, it is tempting to leverage this
well-established stylized fact to recover the square root law. We generate a series
of trade signs with an autocorrelation C(l) = ⟨εtεt+l⟩ = l−γ and we naturally
impose a propagator-type impact G(t) ≈ t−β , β = 1−γ

2 , see [7], to recover price
diffusivity. But again, by doing so, one will still obtain a linear impact for synthetic
metaorders, see Figure A.3.

Figure A.3: Retrieving a linear impact when constructing synthetic metaorders on a
synthetic price. The basic price is built using uniformly distributed volumes (qmin = 1
and qmax = 100 and a series of uncorrelated random signs. The instantaneous impact

reads rt = εtq
χ with χ = 0.5. Synthetic metaorders were constructed with 4 traders and

a power law distribution of exponent χ = 2.The propagator price refers to a synthetic
price constructed with autocorrelated signs, C(l) = ⟨εtεt+l⟩ = l−γ and a transient

impact that decays according to the propagator model : G(l) = t−β
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Chapter 8: the VAR model

Aggregated Impact

Inspired by the work of F. Patzelt and one of us (JPB) [37], we quantify the
relationship between the aggregated execution imbalance and its impact on the
price for a bin size N . In a similar way, let us define the aggregate-imbalance
impact for N consecutive observed price changes:

RN (IN ) =

〈
mt+i −mt|IN =

N−1∑
i=0

V ex,a
i − V ex,b

i

〉
. (B.1)

As in [37], we write:

RN (I) = g(N)Fα,β

(
I

h(N)

)
, (B.2)

where g(N) and h(N) are the appropriate scaling of the return and the imbalance
for a bin size N , and Fα,β is a sigmoidal parametric function

Fα,β(x) =
x

(1 + |x|α)
α
β

. (B.3)
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Figure B.1: Evolution of the scaling of of the impact and of the return. Starting from
N = 20, the evolution of the scaling is stable.

After calibrating of the parameters of (B.2), the rescaled aggregated impact is the
same for all the bin sizes N , as one can see in Figs. B.1 and B.2.
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Figure B.2: Left: Aggregated imbalance impact on raw data, for different bin sizes N
before the rescaling. Right : Aggregated imbalance impact on raw data, for different

bin sizes N after the rescaling.

It is interesting to note that the universality of the aggregate impact holds even
for price change-by-price change data, although the scaling of the returns and the
impact no longer follows a pure power law.
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Chapter 9: the Santa-Fe like
model

Stability and Scaling in Feedback Models

Overview. This appendix provides additional numerical results supporting the
analysis of various feedback mechanisms. We focus on the stability landscape,
finite-size susceptibility scaling, and spread behavior for models with Hawkes-type
and Zumbach-type feedback kernels. All results are computed for varying model
parameters and interaction strengths. These plots are part of ongoing work, and
we plan to revisit and refine them shortly.

Stability Maps

We display the stability maps for four variants of the generalized Hawkes and
Zumbach feedbacks. Simulations are performed with N = 140, T = 500, λ =
10, µ = 20, ν0 = 1.
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(a) Global Mild Hawkes

(b) Local Mild Hawkes

(c) Global Wild Hawkes

(d) Local Wild Hawkes

Figure C.1: Stability maps for the four Hawkes kernel feedback models.
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(a) Global Mild Zumbach

(b) Local Mild Zumbach

(c) Global Wild Zumbach

(d) Local Wild Zumbach

Figure C.2: Stability maps for the four Zumbach kernel feedback models.
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Finite-Size Scaling of the Susceptibility

Hawkes Kernel

These plots show the scaling of the system susceptibility with system size for the
Hawkes-based feedback models. Again, simulations are done with λ = 10, µ = 20,
and ν0 = 1.
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Figure C.3: Susceptibility scaling for GMH.
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Figure C.4: Susceptibility scaling for LMH.
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Figure C.5: Susceptibility scaling for GWH.
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Figure C.6: Susceptibility scaling for LWH.
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Figure C.7: Susceptibility scaling for LWS.

Zumbach Kernel

Same analysis for Zumbach-based models. Simulations are done with λ = 10,
µ = 20, and ν0 = 1.
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Figure C.8: Susceptibility scaling for GMZ.

250



Appendix C. Chapter 9: the Santa-Fe like model

1.0 0.5 0.0 0.5 1.0 1.5
T1/ ( K)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

T
(

,T
,N

)

Time
 200.0
 271.0
 343.0
 414.0
 450.0
 486.0
 557.0
 629.0
 700.0

1.0 0.5 0.0 0.5 1.0 1.5
T1/ ( K)

0.0

0.2

0.4

0.6

0.8

1.0

P(
c
<

T,
,T

,N
)

Time
200.0
271.0
343.0
414.0
450.0
486.0
557.0
629.0
700.0

Figure C.9: Susceptibility scaling for LMZ.
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Figure C.10: Susceptibility scaling for LWZ.

Spread Scaling

Finally, we analyze how the average spread varies with system parameters and
model type close to criticality. Each figure shows the scaling for a specific model.
Simulations are performed for λ = 10, ν0 = 1, β = 1 and N = 1000
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nables des marchés réels, et ce sans avoir à ajouter
une quelconque information économique exogène dans le
système. Ces outils non seulement appuient nos théories
par leur efficacité surprenante, mais aussi ouvrent de nou-
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